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FOREWORD

The overall objective of this NASA program has been to develop and

implement several computer programs suitable for the design of lobe

forced mixer nozzles. The approach consisted of extending and

existing analytical nacelle analysis to handle two stream flows where

one of the streams is at a higher energy. Initially the calculation

was set up to handle a round, free mixer i_cluding satisfying the

Kutta condition at the trailing edge of the mixer. Once developed and

calibrated, the same analysis was extended to handle periodic

boundary conditions associated with typical engine forced mixers. The

extended analysis was applied to several mixer lobe shapes to predict

the downstream vorticity generated by different lobe shapes. Data was

taken in a simplified planar mixer model tunnel to calibrate and

evaluate the analysis. Any discrepancies between measured secondary

flows emanating downstream of the lobes and predicted vorticity by

the analysis is fully reviewed and explained. The lobe analysis are

combined with an existing 3D viscous calculation to help assess and

explain measured lobed data.

The program also investigated technology required to design forced

mixer geometries for augmentor engines zhat can provide both the

stealth and performance requirements of future strategic aircraft.

For this purpose, UTC's available mixer background was used to design

several preliminary mixer concepts for application in a exhaust

system. Based on preliminary performance estimates using available
correlations, two mixer configurations will be selected for further

testing and analysis.

The results of the program are summarized in three volumes, all under

the global title, "Turbofan Forced Mixer Lobe Flow Modeling". The

first volume is entitled "Part I - Experimental and Analytical

Assessment" summarizes the basic analysis and experiment results as

well as Focuses on the physics of the lobe flow field construed form

each phase. The second volume is entitled "Part II - Three

Dimensional Inviscid Mixer Analysis (FLOMIX)" The third and last

volume is entitled "Part III- Application to Augmentor Engines"
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SECTION 1.0
INTRODUCTION

A forced mixer is a device that is used on gas turbine engines to internally
mix the hot turbine efflux with the cooler, lower velocity fan bypass or

secondary stream. The principle motivator for doing this on commercial gas

turbine engines is to reduce the jet noise associated with the high energy

core stream. Also, when designed properly, the mixer can also achieve an

increase in gross thrust while realizing noise reductions. Figure l shows a

typical separate and mixed flow nacelle. Note that to achieve the mixing, the

duct surrounding the engine must be lengthened. This adds weight, as does the

mixer and the larger centerbody plug. Normally, and particularly for short

range aircraft applications, these weight penalties offset the thrust

improvements. In addition, the increased difficulty of intergrating the longer
nacelle into the aircraft flow field without incurring interference drag

penalties, in the past has prevented launching new engines into service as

mixed flow nacelles purely on a performance basis. However, with increasingly

stringent noise regulations, mixers are being considered for future commercial

engine applications. Mixers are also being considered in military applications
as variable area devices for varying cycle match and as a way of spreading the

hot turbine exhaust ahead of afterburning flameholders. This report presents

an analytical method which has been developed for the mixer lobe flowfield.
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Figure 1 Typical Nacelle Exhaust Configurations



Conventional or commercial forced mixer geometries consist of periodic lobe

structure that can be described in terms of a number of geometric features.

Figure 2 illustrates two cross-sectional views of the lobe. The scarf angle or

lobe cutback angle is used to reduce lobe length with increasing penetration
into the core. Scalloping is a cutout of the lobe lateral surface used to

minimize lobe wall structural problems while promoting tangential mixing.
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Figure 2 Mixer Lobe Geometry Definition



For manyyears the mixer was designed using a trial and error experimental
approach, wherein limited traverse and performance data was used to refine
design concepts. 1-3 _ore recently, "benchmark" experiments 4,5 resorting
to high response and LDV instrumentation have probed the mixing chamber in an
attempt to explain the mixing process and its driving mechanisms.These
experiments confirmed that the mixing process is a viscous dominated process,
6 and that the primary driving mechanismis _:hesecondary flows _enerated in
the lobed region of the flow. Several researchers have proposed a variety of
inviscid and viscid processes for producing the secondary flow, but as ye_, no
attempt has been made to analytically mode] _hem. Anderson and Povinelli 1,8

have lumped these terms together under a "gereric" vorticity label,

analytically simulating its effect in terms cf a vortex sheet distributed

along the lobe exit surface. Such an approach has been used to generate inlet

conditions for a viscous marching analysis in the mixing duct. The results of
these calculations, as seen in Figure 3, have been shown to realistically

simulate observed flow mixing patterns. The purpose of this paper is to

develop an inviscid analysis which, in conjut;ction with a lobe boundary layer
analysis, can predict the flow over the mixer lobes, thereby obtaining the

conditions needed to initiate a marching viscous calculation in the downstream
duct.

The analysis presented in this report is an attempt tn examine one particular

inviscid secondary vorticity generator called the "flap" vorticity scheme

(Figure 4). In this model, the vortici_v is _ssociated with the periodic lift

distribution produced by the periodic lobe trailing edge. The feasibility of

an inviscid method predicting an observed level of flow penetration is
dependent on the axial flow component remaining attached to the surface.

Surface pressure and shed vorticity distributions will therefore be examined
to calibrate the method.
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Figure 4 Secondary Flow Generation Models
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SECTION 2.0
ANALYTICAL APPROACH

A. Overview

The forced mixer consists of a convoluted lobe section and a mixing chamber.
Observations have proven that the lobe region is responsible for the secondary
flow generation while the downstream duct region to the nozzle exit plane
produces the resultant flow mixing. It is reasonable therefore to propose
zonal analytical approach, wherein regions are treated using locally
applicable techniques. The convoluted lobes can be viewed as a ring wing with
a periodic "spanwise" loading distribution, r(e), as is shown in Figure 5. The
periodic lobe cambering produces a nonuniform loading distribution and a
corresponding shed vorticity field where strength varies periodically in o.
The shed vorticity is associated with crossflow velocity field (secondary
flow) that "mixes" the flow as it is convecte_ downstream. The vorticity is
then stretched and eventually dissipated in the mixing chamber through the
action of viscosity.

_0
I

r_O)

I

Figure 5 - Ring Wing Analogue of Forced _lixer

A complete inviscid treatment of the three-diT_ensinnal lobe region is still a
difficult problem, due to geometrical complexity, rlultiple energy streams ,_nd
compressibility. Considering the lack of certlinty ahnut the relevant driving
mechanism for the secondary flo_# generation, it is appropriate to consiaer a
more approximate analysis that can verify the magnitude of the flap vorticity
r_o;!el. By neglecting the effect of _all boundary layer d_velopnent, the flow
can be considered as irrotational regions separated by a vortex sheet.
._o_mstream of the lobe structure, the flows can initially considered to he
inviscid also, :_ith tile wake modeling all of the energy jump. An analysis in
terms of a velocity potential, defined within each region, is therefore
possible.



The mixer lobe surface is characterized hy t_o length scale ratios, _vhich
provide _elative measures fer the lobe height, axial and azimuthal variations.

AR NAR
E1 - L _2 :

where N is the number of lobes, L the axial length and a R the lobe height
above some mean reference radius. For many current designs, the lobes are
axially slender (EI<<I) and the local Mach numbers are low enough that a
small disturbance model may be introduced as a means for treating the salient
features of the lobe mixer problem. In the next section a unique small
disturbance formulation will be developed that will analytically uncouple the
e variation and reduce the problem to the solution of a sequence of
axisymmetric problems. These problems can be solved by taking advantage of
previous experience 8 whereby the effects of power addition and "exact"
surface boundary conditions were modeled. In contrast to this earlier work, a
finite volume cylindrical grid formulation similar to that of Wedan and
South's 9 is used. This approach yields a straightforward treatment of
extremely general geometries. Although Wedan's calculations have been applied
to essentially symmetric geometries, the method presented below will have no
such restrictions.

The power contribution and lobe loading result in a potential _ump [6] across
the wake shed from the lobe trailing edge. The corresponding induced secondary
flow has a net circulation F . By appropriately choosing the closed path of
integration over half a lobe, as shown on Figure 6, the circulation integral
reduces to

F: [#]e=o - [#] e=e (1)
0

VTU /_

i .,4"

Figure 6 - Schematic of Lobe Trailing Edge Integration Path
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In the following sections, a potential analysis for the forced mixer will be

developed. The complex three-dimensional problem previously described will be

linearized permitting an uncoupling of its e dependence in the governing

equations. Special treatment of surface and Kutta conditions however will be
needed to insure compatibility with the governing equations and the physics of

the problem, while also uncoupling their e dependence. Finally the treatment

of power addition within a potential format wiTl be developed.

B. Potential Flow Analysis

The inviscid lobe analysis will be applied to _:he flow domain betv1een the fan
and core flow discharge plane and a downstream plane in the mixing chamber,
schematically shown on Figure 6. The plane should be displaced sufficiently
from the nozzle exit plane so as to avoid nonl_near compressibility effects.

MIXER

INLET MXER MIXING DUCT I JET

LC}BES AND NOZZLE PLUM_

Figure 7 Mixed Flow _lacelle Analysis Domain

The governing equation of mass conservation, applied to an arbitrary control
volume in splce, yields

_pT. -_dA = o (2)

The nondimensionalfzed mass flux is defined in terms of a perturbation flow
from an upstream subsonic x-"aligned" flow as follows

-=e. _ ==e.

+ 6r i + 1 / (3)p v = i + 2_x ix r F _ e



where#2 : 1 - M2 and _ is the perturbation potential. Only the linear
terms have been retained in Equation (3). The expansion is madeassuming that
all surfaces can be considered to have slender shapes in the streamwise
direction.

Separation of Variables and Numerical Approach

Appropriate surface boundary conditions can be derived from a flow tangency
condition given by:

-_ "VF = 0 (4)

where v-',the velocity vector is given in terms of a velocity potential and F

is a general surface described in terms of the r, _, x cylindrical coordinate

system

F (r, x, e) : r -f(x,e) : 0 (5)

If the velocity potential is assuF;ed to be a perturbation about the upstream
axial flow and if the pert, rbation velocity components are assumed small
relative to the upstream flow, then the axial perturbation potential
contribution can be neglected and the surface boundary condition reduces to an
expression for the surface radial velocity on a mean surface Rm(x).

f
-- + 0

¢r fx .-_ @o (6}

Rm

The perturbation or small disturbance approximation is equivalent to limiting

surface slopes to order E1. This linearization of the boundary condition is
needed to render the overall problem separable, as will be seen shortly. At

first glance, it appears that the last term in Eq. (6) is of order _i,

however, no such perturbation restrictions has been imposed in the azimuthal

direction. The terms, fx, fo are known functions which describe the lobe

geometry.

Problem closure is ohtained by imposing a q,asi one-dimensional analysis for
definition of the inlet flux and a Kutta condition to uniquely set tile net
circulation. In order to simplify the analysis, a cylindrical coordinate
system orientation was used to simplify evaluation of the flux integral (2).



Normally, a body conforming or sheared Cartesian grid would appear the logical

choice for a coordinate mesh. By treating the mixer with a pure Cartesian

grid, the following analysis will be more tractable. Furthermore, one can also

substitute storage of large arrays with the additional complexity of irregular

boundary/mesh intersections. Analysis of complex geometries in two- and

three-dimensions can be easily treated using such a scheme. The mixer lobe

geometry is assumed to have no scalloping and scarfing so that the trailing

edge will align with the mesh. Extensions of the analysis to include scarf
effects will be discussed in an Appendix. Consider the situation where the

general three-dimensional lobed mixer problem is perturbed about some mean

surface. It is possible to avoid analyzing the full three-dimensional problem

be recognizing that the flow is a periodic function of the number of lobes.
Solutions to Equation (2) and any appropriate boundary conditions are

therefore assumed to be separable, i. e.,

(x,r,o} = g(x,r)h(o} (7)

Combining Equations (2,3,7}, the governing flux balance equation terms can be

appropriately separated into terms that are either a function of (r,x} or of e

alone,

2gxrdr +/ drE-W II-S rgr = -he = K2 (8)

dr d x /h de
AA r

where K is the separation constant and the E-_, N-S and AA integrals are
elemental areas evaluated in the (x,r} plane. The e component of Equation (8)

can be recast to identify the periodic nature of the separated variable. The

solution for h(e} includes linear combinatior_s of trigonometric functions,

where appropriate application of a symmetry boundary condition at the lobe

crest simplifies this to

hk = Bk cos I k _ e__'

\ eo /
k = 0,1,2 .... HH (9)

where K = ke/e o, eo is the half angle of the lobe (crest to trough}, NH is
the number of harmonics used in the Fourier series, and Bk is a sequence of
unknown coefficients still to be determined. The k = 0 solution corresponds to

the axisymmetric solution limit. Since the sE_paration constant can take on

multiple values, the potential assumes a more general form

6 = _E] gkhk

k



The axisymmetric component of Equation (8) can be evaluated for an arbitrary

point in the flow field on integrals aligned to the cylindrical mesh (Figure

8a) to produce

i

S, +s .°.-<b,,k,.,.--o2g rdr grk -6xk
E-W ll-S AA

(I0)

The last integral is a source term integrated over the enclosed area (drdx).

Evaluating the flux balance Equation (10) on an arbitrary flow element .yields

(,, )EAE(grk) ,ANI'r )s'sAw + gx + - - gk K_" a_ : o

W r C

k = O, 1, 2,...NH

(ii)

where the r term has been approximated by its value of the center of each flux
cell.

(ill GENERAL ELEMENT

,f
A N

AEU

AW AW L

-,--, I I,_EL

Ib) LINEARIZED IAXI.) 1¢1 WAKE ELEMENT

SURFACE ELEMENT

Figure 8 Cartesian Flux Volume Element Description

Equation (11) is a discrete approximation whose subscripts refer to the

respective faces of the elemental volume shown on Figure 8a. Central

differencing of the flux terms and collecting the contributions at each node

results in a tridiagonal equation system in terms of 9ijk.

lO



A, gi,j-l,k + Bj gi,j,k (12a)

where

+ Cj gi,j+1,k : Wj,k

i( = 0,1,2, ..NH

Aj = AS
Ar

,:I <,+'>'+rIA+,I
(12b)

(12c)

Cj = At_If (12d)
ar

_ AW /32 _ AE /32
Wj'k = a_ gi-l,j,k e_ gi+1,j,k (12e)

Closure to the problem formulation requires application of boundary conditions

on the boundaries of the domain of integration. Referring to the computational

outline in Figure 7, the no flow condition will be imposed on all solid

surfaces. The upstream flows normally are defined in terms of the engine

discharge conditions, but flow continuity (Kutta condition) at the lobe

trailing edge necessitates an alternate approach to avoid overspecifying the

inlet conditions. These boundary conditions vlill be explained in the following
sections.

Surface No-Flow Boundary Condition

In a flux formulation, the no-flow boundary condition is implemented as a zero
flux condition on all solid surfaces. The flux balance for an element

intersecting the three-dimensional lobe surface is not separable along the

lines previously derived. In order to render the problem separable, the

boundary conditions must be linearized in the o direction resulting in a

modified boundary condition with a source-like term applied on a mean

axisymmetric surface, Rm(X). The surface intersecting computational element

effectively looks like Figure 8b. The flux balance on such an element must be

modified by an additional source term representing the "surface" flux (gr)

in the r direction,

gxr rdr +f% r_x-f_rk rdx-K 7 gk _drdx = 0

N-S Rm AA

k = 1,2,...NH

(13)
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The areas in the integrals describe only the external portion of the cell on
_:heside and azinl,thal (%_) faces.

By applying the meanradius approxination to the contour, one can also express
the lobe surface in terns of separable variables, i. e.,

NH

f (x,e) = Rm (x) + ]El >,k(X) hk(e)=
k=l

NK

k_:o _'k(x) hk(e)
(14)

where _o(X) is the axisymmetric modal shape and may be used as a mean radius.

A Fourier moment analysis couples the e dependence of the contour with dependent

variables. The unknown coefficients _k are determined by using the angular

definition shown on Figure 9 and arbitrarily defining the potential within a

constant Bk.

Bk=l

Figure 9 - Domain Definitions for Moment Analysis

Substituting the modal description of the geometry into the no-flow condition
and taking advantage again of the orthogonality of alternate Fourier modes for

the gk's on the boundary, reduces the surface boundary condition to a flux
along a Inean surface, which is given by

- (x, Rm):)kk(X) + x) x,Rm) -ak,n+j] (grk ½R 2 _ Z _kn ( gJ( ['k,n-j 15)
m j n

k = 0,1.2,...NH

12



where aij.is the Kronecker delta function. The first term on the right side
is the pmmary contribution to a given mode. The second term represents a
coupling of the different modal solutions due to the product fete in the
no-flow equation. If parameter E2 is small, this term is absent. Observe
that Equation (15) is a mixed type boundary condition. Therefore, the solution
algorithm cannot explicitly determine the gk(x,r)'s from the given boundary
conditions. This problem of coupled modal equations is alleviated by lagging
the alternate modesin the iterative solution that will be discussed shortly.

The modal solutions for the functions gk(x,r_ can be discriticized along to
the cylindrical mesh to yield

__2gxkwAw+ _2OxkEAE_+ grkN AN- grksAS- g.-kl_max --K2p,gk _ = n (16)
m

k = 0,1,2,...NIl

where A denotes the exterior portions of the areas of the intersecte_ cells
and AX the exterior area of its azimuthal face, see Figure 8b. In general, a

surface element includes a region of flow an4 a region interior to the bod,_.

Along the mean surface however, an element includes a core flow and fan flow

region. Correct flux balancing in each regioq is expedited by tracking the

potentials of each flow separately across th,_ surface.

Discriticizing the boundary Equations (15) aqd (16) is complicated by the
mixed mode term in the "surface" flux. in order to solve the equations

numerically, the coupled term is introduced into the _/j,k right side term

and lagged in the iterative solver, i. e.,

°2)Wj, k : Wj, k + _Tmax k ÷ 2R--_m

Bj = Bj + _ ax G1

m

(17a)

(17b)

where G1 and G2 are the coefficients from Equation (15) of the kth mode
and the mixed modes (minus the kth term) respectively.

Solution Algorithm

The governing equations and boundary conditions reduce the analysis problem to

a system of linear algebraic equations in terms of the gk(x,r)'s and

correspondingly the velocity potential. These equations are solved iteratively

using a successive line over-relaxation procedure (SLOR). To optimize the
calculations, a grid halving algorithm is utilized. In such an algorithm, the

previous coarse grid solution is interpolated onto the next or finer grid as
its initial guess. The solution convergence on each grid is monitored by

13



tracking either the residual, defined as the normalized error in the mass
conservation equltion at the nth iterate, or the jump in potential at the
splitter trailing edge. This latter variable is the "flap" vorticity disci_ssed
in the introductory rerlarks. Typically the residual is a monotonically
decreasing function that, in a SLOR scheme, achieves only a t_o orders of
magnitude reduction per grid. Finally, the results are displayed in terms of
the pressure coefficient defined for each stream relative to its o_n upstream
dynamic {lead.

Inlet Flo_-iBoundary Conditions (ConDound Choked Flo_ Analysis)

Flo,4 requirements for cruise engine operating conditions are typically
determined by engine power settings as well as by inlet and nozzle exit areas.
Analysis of the localized mixer/nozzle problem requires a completely specified
set of boundary conditions; ho_lever, precautions must be taken to avoid
specifying inconsistent fan and engine core flo_l conditions such that the
Kutta condition at the lobe trailing edge _lill not he maintained. For example,
if the onset flo_s each _lere specified in terms nf Po, To and 11, the
problem could be over-defined. Use could be made of ti_e nozzle exit flo_
conditions in conjunction with the wake contact surface matching conditions to
determine uniquely the fan and care flow requirements. The problem is further
complicated hy trying to insure that the analysis t_ould include hoth choked
and unchoked conditions at the nozzle exit plane. Table I details duct
operating conditions for several mixed flo_# installations. The table indicates
that the nozzle exit operating condition is dependent on the mission profile
of the aircraft and that choked and uncheked conditions are indeed possible.

I
I P°2, T°2, M'_'2

I

I

i ,

Po,.To . . - "" "i I

Figure 10 Dual Stream Choked Flow Domains
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TYPICAL
TABLEI

MIXERDUCTOPERATING,
(Standard Day)

CONDITIONS

E3
SLTO

JT8D-_09 (Super 90)
SLTO Avg. Cruise

JT15D
(no scallon)

SLTO

Tamb 543.7 519.0 393.8 519.0

Pamb 14.7 14.7 3.46 14.7

Fan

TOF 625.6 627.5 560.2 602.5

POF 22.45 24.36 9.33 22.04

WF 1157.2 299.1 120.1 55.5

Primary

TOp 1490.0 1276.0 1221.0 1534.0

POP 21.65 25.60 10.1 21.09

Wp 159.6 161.4 70.5 21.1

AF

Ap

AN

36.01

908.0

1080.0 108_.0 173.n6

648.3 648.3 130.9

1096.7 1096.7 3n4.0

Nozzle

TON 737.3 864.1 814.3 919.4

PoN 22.20 24.76 9.60 21.46AMIX 85.0a 92.0A 92.0A 84.0A

PoN/Poo 1.50 1.68 2.78 1.46

Condition Unchoked Uncho_:_d Choked Unchol:ed

15



The analysis developed is based on a compound nozzle model, wherein the

curvature induced traverse pressure gradients are neglected and the static

pressure is only a function of axial position. Approximating the nozzle exit

flow by a quasi-one dimensional flow, the continuity equation for a single flow

d (pvA(x)) : 0 (!8)

and the isentropic forms of the energy equation can be combined to give

dA = A (1 1) d In p

This equation has been generalized 11 for multistream flows as follows

(19)

dAi = Ai (12 - 1) d In px_ _--_ . gx
1

(20)

where quasi-one dimensional matching conditions across each dividing

streamline prevent mixing but allow pressure communication (pi=p) across the

flow. But area continuity

therefore,

AT= _A i

i

dAT _ dAi := vd Inp
x_ i _T_ _x

where v , the compound flow indicator is

Reference 10 also demonstrated th,_t the nozzle flow exit state corresponds

to the sign of u, i.e.,

(21)

v = 0

v<O

compound subsonic

compound sonic

compound supersonic

Equation (21), in conjunction with the definition of the local mass flows, in

terms of their stagnation properties,

wi = wi (Ai' Pi' P°i' T°')l (22)

16



and the isentropic relation are sufficient to provide closure of the problem.
For a dual stream flow, equation (21) becomes

v=A_ I -i +A_ -1 (23)

The superscripts refer to axial locations defined on Figure 10. This can be

further reduced using equation (40). In particular, assume that the flow at

the nozzle plane is subsonic, then

and the compound flow parameter becomes

-1

The value of v is not determinate in its present form, since A1 , A2 are
not known. An iteration to determine these areas follovls.

(24)

(a) Guess value for PT for given P01' Aln' A_', A_.

(b) Calculate w2 from following equation giv_,n in Reference 11.

w2 = lWll IF (T01, T02, A1, A*, P01, P02, P )]

m

(c) Determine the new value of F I from equation (22)

(25)

m m

w2 = w2 (A2,1_1,Po2,T02)

but under relax update according to the following

m m m m

Pl = Pl + _ (Pl --#i )

m within given tolerance.and continue iteration until A P1

(d) Determine

wI = wI
(Am m

1,Pm,PO IL,To1)

17



(e) Determine A1,A2 using equation (22), i.e., solve

n n

wI = wI (Al,p_,Po1,T01) for AI

(f) Calculate u according to equation (21).

If v<o, then the solution is complete and the flows are defined in terms of
the given upstreams data and the flows determined in iteration (a-f). If v=o,

then the flow is compound choked and Pe is not p_.

For compound choked flow, a dual iteration is performed to find the exit
pressure for a convergent nozzle, and the splitter exit plane static nressure.
In this case, it is known that the compound flow indicator v = q. An initial
guess for the primary and secondary nozzle flow areas is given by:

n n s s
= ( A1/A t)A1 At

n n s s
: (A2/A t)A2 At

Using equation (24) with p_ replaced by Pe , an iteration is performed
until a value of Pe is obtained which gives v = O. Now the primary and

secondary flo_s can be computed from the continuity equation (22) at the exit.

The secondary flow continuity equation is then used to compute the splitter

exit pressure, which is then used to compute a primary splitter exit flow. If

this flow does not match the primary nozzle flow, a new primary and secondary

nozzle area are computed usina the primary splitter exit flow, and the entire

choked flow calculation is repeated until the flows balance and v = O.

Finally, _lith the flo_vs, pressures and +emperatures in bnth streams kno_vn, the
reference ;lach numbers at the inlet plane for each stream are computed from
the cnntinuity equation {22) and the isentropic equations. The velocity gx of
each stream is therefore directly known. In the present analysis, it is
ass:,ned that gx = gxo M1ile all higi_er rlodal derivatives at th_ inlet nlane
are identically zero.

Kutta condition - Postured !lake Analysis

Treatment of the flow do, mstream of an arbitrary body is complicated by the
unique interaction of the stream from above and below the body. Even in
nonpo_lered situations, the lift of flo_ turning is reflected as a ,iump in
potential convected from the sharp trailing edge. This jump will remain
constant and will follow the trailing stagnation streamline. In the sitL!ation
of po_er addition, streams are assumed locally irrotational with different
energy levels. They inviscidly interact through the local potential jump that
is determined from the basic consistency conditions across a "contact
discontinuity," i.e., static pressu_-e match on the ;lake or vortex sheet S_I and
streamline slope continuity

--=l.

V . P = c) on Sty , S I

18



Classical linear theory assumes the wake lies along a constant radius surface

(Rm) from the trailing edge, and the streamline slope condition is relaxed.

Flow is permitted to cross through the constant radius. Consistent with the

surface boundary cnndition formulation, the wal_e can be modelled by a mean or

axisymmetric surface that varies with axial position.

mean radius approx.

wake streamline

Consider the mass flux balance on an element that includes an arbitrarily

oriented mean wake streamline (Figure 8c). Applying the flux balance (16) to

the upper and lower portions of the (ij) element results in equations that

assume a mass flux can exist across the given wake contour, thereby allowing a

lagging of the wake path in the iteration cycle. Adding the conservation

components together will produce an equation for the ij_n element where the
flux contributions across the wake gr U,L identically cancel each other

out. If the potentials on both sides of the wake are defined in terms of a

mean potential and a wake jump [gk] as follows

- i u L
gijk =_ (gijk + gijk ) (26a}

u L
[gk]ij = (gijk - gijk) (26b)

the flux balance for a wake element becomes

AL gi + (Bu"+ B_} gi + Cu" = Wu" + WL3 ,j-l,k 3 ,j,k 3 gij+i,k 3,k 3,k -

k = 0,1,2,... NH

[gk]ij (BuJ - B_)

(26c)

This Equation corresponds to one row in the general (JMxJM) tridiagonal matrix

for the ith line,

Aj" 1 Bi" I Ci" I

A cjU
Aj Bj cj

(27a)
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The structure of the matrix is equivalent to the following (JM+I) x (JH+I)
tridiagonal matrix

Aj" I Bj 1 Cj'I

AL BL
J a

O

Bj u

Aj+l

C. I/
J

Bj+l Cj+l

(27b)

The two new (ij th) equations are similar to individual wake element flux

balances with the added proviso that the A terms are zero. This is equivalent

to assuming that the wake is a solid boundary since all boundary areas are
assumed by the program logic to be zero. Under such a format, the program can

automatically treat these constructed equations in the algorithm and the real

wake equation is arrived at by contracting or adding the appropriate equations.

The matrix solution for the ith row needs an algorithm for defining the

[gk] and for updating the wake path. The potential jump, [gk] is obtained
from the constraints of static pressure and streamline slope continuity.

Expressing the flows relative to the same reference freestream static

pressure, the pressure match condition reduces to

C = YL L C + 2/xp_

pu !12- PL
U U

(28)

The pressure coefficient Cp can be taken from the general isentropic

definition or from a formulation consistent with our linearized algorithm and

thus separate out the axisymmetric component on each mode E
Pk

_pk(X,r) = -2 gxk(X,r)

The streamline slope matching conditions, along the general wake contour

(29)

u L
_r _r

u _x L1 +#u _x 1 +/3

( 301

can also be simplified by assuming that the axial velocity flux contribution

is small relative to unity, then

u L u L
_r = _r or for each mode gr = gr

k k
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If the slope

dr

n_dx grk _ o,

the wake follows the constant radius approximation.

In order to obtain closure (Kutta condition) <or the problem an additional
• 4.

assumption is needed. Although the global I,ut_.acondition,

Cpu = CpL (31a)

needs to be maintained individual modes need their own boundary condition. It

is proposed therefore that each mode satisfy

u L
- (31b)

gxk- gxk

and therefore equation (31) is implicitly satisfied. Equations (28b), (26a,b)

are then combined to determine the potential ,jump

[gk ] x = El 6ok + E2gx k
(32)

Ideally, the jump in potential along the wake is obtained by integrating out

axially from the trailing edge along the mean radius as follows

rgk] ij : 6o,(x-xtJ ÷E2g-ki+ - E2 k}TE (33)

In the entire preceding discussion, the slope was assumed given. In actuality,

the path is evolved as the program interates. A simple streamline tracing

procedure could be used to periodically update the wake path. Another

attractive approach would be to drive the slope using the nonconservation over
the local flux cell.

Equation (1) can now be re-expressed in terms of the separated variables as
follows

NH/2

F = 4 _] (g2k_IJ_ - [g2k ] D-_ TE (34)
k=1

_._here onTy the had nodes contribute to the net _nd,ac_d circulation field.
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C. Geometry Definition

General lobe contour definition can be a complex problem even if scalloping

and scarf angle cutouts are not included. Current commercial designs fall

within three general categories: radial sidewalls, parallel sidewalls,

circular arc sidewalls with the remaining segments of the lobe defined in

terms of tangentially intersecting circular arc segments. Considering the

periodic nature of the analysis formulated in the previous section, one must

limit the geometry capability to axisymmetric duct wall configurations while

the lobe cross-section must be limited to radial sidewall geometries to avoid

multiple valued structures. Using this approach, a mixer centerbody and fan

cowl can be defined and replicated using the BYU Movie Three-Dimensional

hidden line graphics program, to produce Figure 10.

Figure 11 Three Dimensional Display of JTSD-209 Mixer Geometry

A measure of the feasibility of the Fourier decomposition method can be mad_

by considering a finite nurlber of harmonics and col:_paringthe reconstructed

lobe versus the given lobe definition. A equal angle series construction

permits use of fast Fourier scheme (FFT) to evaluate the Fourier coefficients.

The reconstructed lobes are ._hown in Figure 12 for NH = l, 3 and 9. The base

contour was generated analytically using 50 points. The modal analysis,

ho_lever, does not demonstrate the perfect agreement. The largest excursions

occur at points where the curvature changes instantaneo,sly. Uhereas this

aspect is commonly found in square wave reconstructions, vlhere a lame number
of _odes must be used to obtain an accurate _,vaverepresentation, _light

lobe contour mismatch should not be significant in establishing the "flap"

vorticity field. The sensitivity of the analysis to the number of modes,

however, will he shown below to be a critical factor in determining the mean

radius, the leading term obtained from the FFT analysis.
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SECTION3.0
RESULTSANDDISCUSSIO;,I

The analysis (FLOMIX) described in the previous section has been applied to

several lobed mixer configuration. When_k = 0 (k=l, _,.._.NH}, the zeroth

mode solution will describe the powered flow over a completely axisymmetric

configuration. An initial calculation of a planar mixer lobe in a straight

duct is presented to calibrate the analysis. Planar conditions are simulated

by considering an axisymmetric geometry at large radius. In such a situation

comparison calculations can be made with an available analytically constructed

solution that simulates an isolated olanar mixer lobe using distributed
doublets along a mean planar surface 11 (PLAN_IX). Figure 13 shows a sideview

of the configuration analyzed. The duct walls are defined sufficiently far
from the lobes (H = 8") so that any interactions would be minimal. _umerical

calculations demonstrate that there is no potential interaction effect due to

these walls. The lobe surface in both calculation methods is generated from a

single cosine wave, therefore a single modal (NH = 1) solution models the

flowfield. In this study no power addition effects are considered. Predictions

are presented for the reconstructed (as a function of e) components of the

perturbation velocity on the lobe surface. Figures 14(a), (b), (c) show

comparison calculations between FLOMIX and PLANMIX the three components for

several azimuthal cuts running frem tile lobe crest (e'= O) to the inside of
the lobe trough (_'= 1.0). Tile axial scale runs from the lobe leading edge to
its trailing edge. The profiles reflect the effect of the linear theory
approxir_ations at the trailing edge, i.e., the Kutta condition is satisfied
and the axial velocity perturbation goes to zero. Although b_th methods are
based on linear theories, sliqht differences shnuld be expected since the
planar anal_sis is an inverse methnd evaluating singular integrals nump_icall.v
as input _..lhile the present method is a finite difference flux volume scheme.

LOBE LENGTH = 10 INCHES

I LOBE HEIGHT

INCHES

TUNNEL HEIGHT

H = B INCHES

Figure 13 Sideview Representation of Planar Mixer/Wind Tunnel Geometry
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Hore realistic applications of the method can be found by considering flight

type configurations. In particular, two specific powered applications are

presented due to th_ "benchmark" nature of their experiments: (1) the EnerQv

Efficient Engine (E_) configuration 29, which is an 18 lobe forced mixer12,13,

and (2) a JT8D-209 12 lobe forced mixer 5. The E3 configuration, shown in

Figure 13, is well suited to the present formulation in that although it was

modeled for a modern high bypass engine, it was designed specifically for code

verification, i.e., no scalloping or scarfing of the lobes was used and

extensive surface static pressure surveys were made in the lobe region of the

mixer. In contrast, the JT8D-209 forced mixer is a higher penetration 12 °

scarf angle design typical of first generation low bypass applications. While

this geometry is not strictly suitable for code comparison, the experimental

data included LDV profile measurements of all components of velocity at the
lobe trailing edge. Satisfactory modeling of these lobe cross-sections, even

for the JT8D-209 high penetration lobe (Figure 12) is possible with only ten

Fourier terms, however, a more definitive approach to defining NH is given
below.

TE VIEW SIDE VIEW

Figure 15 Scherltic Reg-esentation of E3 Configuration ?9 Lobed lixer
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Postprocessing of the solution produces surface _lach number definition and

quantifies the level of "flap" vorticity or circulation through the potential

jump at the lobe trailing edge. The surface solutions, although strictly

determined along the approximate mean surfaces can be interpreted, to first

order, as solutions on the actual surfaces. By examining the potential jump

variable, an effort will be made to separately quantify the contrihutive

effects of mean flow turning, power addition and lobe aspect ratio

(penetration angle) on the overall mixing process.

Numerical solutions initially have been made for the E3 configuration 29

lobed mixer and comparisons have been made with test data measured on a full
scale model at FluiDyne Engineering Corp. The experimental cruise flow

conditions were characterized by power settings* of_Po/Pos = _.094 and

_To/Tos = 1.5n. Computational simulation of the measured flow conditions

is obtained by setting the upstream total conditions in each stream as well as

settings the exit static pressure. The quasi one-dimensional choked flow

analysis correctly sets up a choked flow at the nozzle exit plane and sets the
inlet flows and Mach numbers to within I0% of those measured by the facility

flowmeters. Solution accuracy, relative to the level of modal approximation,

however, is to be answered.

Table I summarizes tile individual modal potential jumps [gk] obtained from a
series of calculations in which different levels of modal approximation (NH =

0,1,2,3...} _#ere used to simulate the E3 mixer. The calculations were
initially made for an axisymmetric configuration where the effect of flow
turning of the mean radius (-0.093} and power addition (-0.012) could be
identified. With the mean radius having a positive trailing edge angle, these
results demonstrate that a positive circulation corresponds to a clockwise
rotation. The tabulated calculations variec both the number of harmonic terms
(NH) used to represent the e dependence of the velocity potential and the
number of Fourier terms (NF) used to represent the e dependence of the lobe
surface. The tabulated results indicate that while each approximation produces
different total and modal potential jumps, the individual modes approach fixed
values as more terms are included. Althoug_ the higher modal solutions
converge much more rapidly than the leadin_ terms, the additional storage
required for these higher order terms is impractical. A study of the governing
differential equations indicates that the r,odal couplinn is extremely weak f_r

the axisymetric mode and that its primary driving term is the mean radius,
determined from the Fourier analysis. Since higher order solutions (_IH large)

contribute little to the total circulation field, one can neglect +hese

equations while retaining tile addition terms for an improved Fourier (NF)
definition. For example, calculations with NH = 3, NF = 5 yield the same modal

jumps as NH = 5, _IF = 5. In the comparison_; described below the solution
parameters NH = 5, NF = 18 were used as representative of an "asymptotic"
solution.

* The subscript s refers to reference con(litions in the secondary or fan

stream.
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TABLE I. POTENTIAL JUMP COMPARISONS [gk]

NH NF

Power Total
Addition Jump k=O 1 2 3 4 5

0 axi (18) Ho

0 axi (18) Yes

1 1 Yes
3 3 Yes
5 5 Yes
3 5 Yes
5 9 Yes

Asymptotic Value
(_IH=5, NF=18)

-0.093 -0.093

-0.118 -0.118

-1.396 -1.328 -0.068
-0.527 -0.467 -0.084 0.018 0.006
-0.353 -0.292 -0.087 0.013 0.007

-0.367 -0.293 -0.087 0.013
-0.263 -0.187 -0.088 0.008 0.009

-0.191 -0.118 -0.089 0.008 O.n10

0.006

-0.004 -O.N03

-9.002 -n.O03

MACH

NUMBER

0.65 -

0.45 --

m

0.25
0

8'=0

J_L ANALYSIS
• DATA

_NOT-'_oLE • • • • •

_ • "--CENTERBODY

I 1 I I
0.25 0.50 0.75 1.00

AXIAL DISTANCE- x/L

Figure 16 Surface Mach Number Comparisons for E3 Duct Walls at
Lobe Crest Orientation
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Figure 18 Surface Mach Number Comparisons for E3 Duct Walls at

Lobe Trough Orientations
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Figure 19 Surface Mach Number Comparisons for E3 Mixer Lobe at
Lobe Trough Orientation

Surface :lach number calculations, compared to measured data within the lobe
region, are shm_Jn on Figs. 15-19. Figures 15, 17 present comparisons made for
an azimuthal cut aligned to the lobe crest _hile Figs. 18, 19 shm_ comparisons
for the lobe trough orientation. Initial calculations indicated that the
quasi-one-dimensional boundary condition set the flow and inlet conditions
approximately I0 percent too high, therefore, a nozzle flmY coefficient (Cv
= 0.94) vlas introduced to adjust the inlet flow conditions, frith this
nodification, the figures shmp substantial agreement bet;leen analysis and
data. The axisymmetric fan nozzle and centerbody comparisons shown on Figures
16 and 18 show little angular variation and are largely one dimensional in
behavior. The lobe surface solutions, however, show substantial e dependence.
A major discrepancy is noted near X/L = 0.50, the cross-over point for the fan
and core flows. A Mach number pulse at this point is produced primarily by the
first modal solution in a manner similar to Figure 12a, observed in th_
previously discussed planar mixer case. Viscous interaction effects should
decrease the analytically predicted gradients and reduce this mismatch.

The FLOMIX analysis has also been applied to the JT8D-209 lobed mixer
configuration. This configuration was previously studied at IJTRC in a scaled
model test but still simulating the hot flow (z_Po/Pos = 0.044, _To/Tos

: 1.617) full scale engine cruise conditions. Analysis of this configuration
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is complicated by the additional effect of a 12° scarf angle. While no surface
or flowfield details were measured within the lobe region of the duct, LDV
measured velocity components were obtained at the lobe trailing edge and in
the mixing duct. Any analysis comparison with data, however, requires an
interpretation of the small disturbance solution off the mean radius.
Examination of the rlach number indicates that axial component is largely
one-dimensional and has little variation with radius, within each stream.
Displacing the flow relative to the physical lobe trailing edge results in
comparisons for the radially measured axial component of Mach number, shown on
Figure 20 at the crest location and on Figure 21 for the trough location. _oth
figures show substantial agreement between analysis (NH : 5, NF = 9) and
experiment.

Figure 20
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Figure 21 Comparison of Axial _ach Nu:Tber at Lobe Trailin_ Edge
Plane for JT8D-209 ,_lixer, Trough Orientation
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A fuller interpretation of the flowfield at the lobe exit plane must be
inferred from slender body theory 14,15, whereby the outer potential is

determined as a function of x from the solution of an axisymmetric problem and

the inner potential is determined as a solution of the two-dimensional

Laplace's equation in the cross plane (r,e}. This philosophy will be used with

the modal axisymmetric solutions to infer the cross flow or inner solution by

viewing the potential jump as the doublet source equivalent obtained from the
outer solution.
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SECTION4.O
ANALYSISIMPLEMENTATION

A. Geometry Definition

A generalized procedure to obtain the coordinates of an arbitrary forced mixer

application can be extremely complex. Although an engine centerbody is usually

an axisymmetric surface, tileouter cowl, which is initially also axisymmetric,

can transition to a high AR rectangular cross section at the nozzle exit plane

(Figure 22). Commercial applications are typically fully axisymmetric, but

military applications can include such ducts. Superellipsoidal coordinates can

be used to analytically approximate such circular to rectangular transition

ducts.

FLOW

Figure 22 Engine Exhaust Transition Duct.

Lobe contour definition is ho_,mver a mere c:)mplex problem. Even if scalloping

and scarf angle cutouts are not modelled, IrDbe contours can still be very

general. C_rrent commercial designs fall _,fithinthree neneral categories;
radial side;_alls, parallel side_alls, circular are side_valls (See Figure P.3).

The remaining segments of tile In_e are then defined in te_,_s of tangentially

intersecting circular a_c segments.

Figure 23 Typical Lobe Cros_ - Section Contours
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Considering the periodic nature of the analysis formulated in the previous
section, one must limit the geometry capability to axisymmetric duct wall
configurations. The lobe cross-section must also be limited to radial sidewall
geometries to avoid multiple valued structures. Lobe coordinates are
analytically evaluated by dividing the lobe into three segments(shown on
Figure 24).

g
Figure 24 Analytical Breakup of RaHial Sidewall Lobe

Using this approach, the baseline JTSD-209 model 12 mixer is defined interms
of the radii given on Table II, where the appropriate radii and the sectional

locations are shown on Figure 25. Finally, after generating the mixer

coordinates, one can replicate the lobe and display, using the BYU Movie

Three-Dimensional hidden line graphics program, the lobe portion (Figure 26)

as well as the complete forced mixer configuration (Figures 27, 28).

Table II - JT8D-209/12C Lobe Mixer Definition

AXIAL SECTION

X

Rr_. V.Lley

RcrDwn

D

A B C D E F G H

i

6551 951 1.236 1.593 1,837 2,093 2,284 2,713

2,,72912,719 2,694 2.642 1.593 2.517 2,449 2,276

2.50312.503 2.503 2.503 2.526 2.593 2.b_2 2.831
I

.301

Rrv Tangency Radius

R_,o,_ : [R_v * Rc .... ]/2

Rc_ow.

R Crown Tangency Radius

Rrv Origin Radius

R Crown Origin Radlus

.963

300

2.512

.313

2_243

I J K L M N

3.141 3.570 3,998 4.306 4.613 5.399

2.103 1.929 1,756 1.632 1.508 1,190

2.994 3.105 3.160 3.167 3.146 2,997

,313 ,310 .296 .279 ,258

2.295 2.088 1,891 1,757 1,628

.313 .313 .313 .313 .313

2,243 2,243 2,213 2,243 2,243

.299 .274 .250 .235 .233

2.56 2.760 2.902 2,975 2,984 2.957

.354 .303 .247 ,207 .197 .173

.300 .278 .255 .241 .239 .2q4

.239
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Figure 25 JT8D-209/12 mixer (-12 ° scarf anglel Geometry Description
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Figure 26 3-Dimensional T1ovie Plot of Input-Generated JTSD-209 '_ixer

Figure P_7 3-Dimensional "_ovie Plot of Figure 2B
Complete JTSD-209 ;lixer
Geometry

3-Dimensinnal i'_ovie Plot of
Complete JTSD-209 _,lixer
Geometry (Lnol',inq Upstream)
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Finite Fourier Series Decomposition

Lobe contours are constructed using tangenzial intersection of radial lines
with a variety of circular arc segments. The contours are assumed symmetric

about the either the crest or trough of the lobe. The half lobe is then

subdivided into NINT equal angle segments. At these points (Ri,e i) the
lobe can be represented by a finite Fourier series, where the number of

Fourier Terms is determined by the (NINT+I) constraints. A measure of the
feasibility of the Fourier decomposition method formulated in Section II can

be made by considering a finite number of harmonics (NH = NINT/2) and
comparing the reconstructed lobe versus the lobe definition array from the

given input data.

The definition of an arbitrary point on the lobe surface is given by the
following series

F = Rj(ej) =

where

k=oNH[Z Ak cos (kaj) _ Bk sin (kej)] + Ro

_j = 2=ej / 2eo = =ej/e o 0 _ej _2e o

and ej, eo are shown on the figure below.

(Ri, Oi}

,/
/\

Evaluation of the unknown coefficients is possible by forming 2NH moment

relations that take advantage of the orthogonality of the basic Fourier
functions,

e.g.

2_ = NH I_oA2_k 2f;k e]/kF cos(is) de Z cos(k_)cos(ie) de + sin Ke)Cos(id) d
k=l

0 0

i = 0,1,2,...NH
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Using trigonometric integral identities to simplify the above equation one
obtains

]. i."2 

Bk : _TnJ AF sin (kol) do_ k : 0,1,2,...NH

2=

Ak = _ofAF cos (k(_)d(_ k = 0,1,2,...NH

An equal angle series construction permits use of fast Fourier scheme (FFT) to

evaluate the unknol_n coefficients. A more reasonable contour definition,

however, can be obtained by using an equal arc length definition of the input

data. In such a formulation, the coefficients must be evaluated using a more
conventional matrix inversion procedure.

The truncated Fourier series has been applied to the three lobe families sho_vn

on Figure 23. The limit on angular double valuedness for the parallel and

curved side wall geometrics was eliminated, only for this geometry study, by
using an equal arc length decomposition of the lobe surface. The recnnstructed
lobes are shown on Figures 29, 30, 31 for Nil = 3 and 5. The base or reference

contour _as generated analytically using 50 points. One can see that
relatively few modes are required to produce a good surface representation of

the parallel and curved side _¢all cases. The radial analysis however does not

demonstrate the same degree of agreement. The largest excursion occurs at

points where the curvature changes instantaneously. This aspect is commonly
found in square wave reconstructions, where a large number of modes must be

used to obtain an accurate wave representation. The relative mismatch is,
however, enhanced by the magnification of the abcissa scale.

The level of error should be compared however not only to the analytic contour

reference but also to the manufacturing tolerance of the mixer. Mixer lobes

can be accurately fabricated by three-dimensional machining of a solid mass,
however, this is prohibitively expensive. Our JT8D-200 mixer experience, also

used for the JT8D benchmark mixer (Ref. 5), shows that a typical mixer can
have dimensional variations as large as 0.4 inch. For example, a calibration

of two adjacent lobes on the benchmark mixer (Figures 32, 33) shows

substantial lobe to variation. It therefore seems reasonable that only 3-5
modes will be necessary to provide adequate three-dimensional contour and flow
reconstruction. In production practice the lobe-to-lobe variations seem to

compensate as long as lobe flow area is maintained.
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B. Linking Diagram for FLO_IX Program

EBC

RNINPT

PLOT

LOBGEN
EO_SS

FOREGO

FORVAL

REPLIC
OUT30
LAmDA$

HAF

FAREA SPLIT--RADIUS

GEOM.--it-ARC
I..RAOiUS

SERIES_RFAST _FAST

PLOT

REPLIC_PLOT

PLOT

PGUESS

PLTGRD _PLOT

FARFLD

SLOR L MAI"RIX
TRIDI

MATRIX

BCABCN
POEABCN
PLUME

PLOT

PLOT

PLOT

RECOMB _PHIPLT PLOT

PJMPLT _PLOT

TEPLAN
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C. Input Description for FLOMIX Program

The format of each input item is identified by type.

Type Example Description

A TEST CASE Alphanumeric: Any keyboard characters are

specified_Tthin the given field.

F 23,64 Floating F'oint: Decimal fractions including

decimal poTnt-are specified anywhere within

the given field. Positive values are assumed

unless the value is preceded by a minus sign.

-.2364 E2 Scientific notation may be substituted by

specifying a decimal mantissa (as above) and

a right adjusted base 10 multiplier preceded
by a symbol E.

I 42 Integer: Right adjusted whole numbers (no
decimal point) are specified within the

given fie_ d.

Blank F or I fields are set equal to zero, but blank A fields are set equal to
blank characters.

Card Type 1

Colun______nn Ite___mm Typ____ee

1-52 AXITLT A

Description

Title for plotting routine

Card Type 2

Col umn Item Type

1-80 TITLE A

Description

Title of case for printout

Card Type 3

Column Item Type

1-5 NLOBE I

6-10 tlHARM I

Description

No. of mixer lobes

_Io. of harmonic solutions
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Card Type 4

Column Ite____mm

1-10 PT1 F

11-20 TT1 F

21-30 GAMI F

31-40 RI F

41-50 PINF F

Description

Total pressure of primary flow, psi

Total temperature of primary flow, °R

_1' specific heat ratio of primary flow

R1, gas constant of primary flow
ft=lb/lbm-°R

Static pressure of external or ambient
flow, psi

Card Type 5

Column Item Type

1-10 PT2 F

11-20 TT2 F

21-30 GAM2 F

31-40 R2 F

Description

Total pressure of fan flow, psi

Total temperature of fan flow, "R

_2' specific heat ratio of fan flow

R2, gas constant of fan flow,
ft-lb/lbm-'R

Card T_pe 6

Column Item Type

i-5 IMXFIN I

mesh

6-10 JMXFIN I

mesh

11-20 XMIN F

21-30 XMAX F

31-40 RMIN F

41-50 RMAX F

Description

No. of axial (1) grid lines on finest

No. of radial (J) grid lines on finest

Xmin, minimum axial grid location

Xma x, maximum axial grid location

*Rmi n, minimum radial grid location

*Rma x, maximum radial grid location

*Coordinate data for centerbody and fan cowl geometries must be specified
within these radial grid limits.
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Card Type 7

Maximum of five grid halvings are possible, with last being on finest mesh.

Setting NGRIDS=I will calculate only on finest mesh.

Col umn Itern Type

1-5 NGRIDS I

6-10 MAXSWP(i) I

11-15 MAXSWP(2) I

16-20 MAXSWP(3) I

21-25 MAXSWP(4) I

26-30 MAXSWP I

(NGRIDS)

Description

No. of grids used in mesh halving

Maximum No. sweeps on grid 1 without

satisfying its convergence tol.

Maximum No. sweeps on grid 2

Maximum No. sweeps on grid 3

Maximum No. sweeps on grid 4

Maximum No. sweeps on grid 5

Card Type 8

Column Item Type

1-10 RLXSUB F

11-20 PHIXT F

21-30 PHIR F

Card Type 9

Description

Over Relaxation factor for SLOR

(Recommended=l.7)

Factor controlling Ox t artificial
time term

Factor controlling Ot artificial time
term

Extrapolated Relaxation Parameters (Set tc zero for no extrapolation)

Column Item Type Description

FREE FORMAT INSTEP I Mir_imum No. iteration sweeps before

forced extrapolation (default=-250)

INDJMP I Mir_imum No. iteration sweeps between

exlrapolation cycles (default=25)

TOLJMP F Tolerance factor (default=l.5)

NSWAVE I No. of sweeps used in calculating

average residual for extrapolation
(defaul t=5)
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Card Type I0

Output control parameters

Column Item

I-5 IDUMP

6-10 NTH I

11-]5 NR I

16-20 IPLOT I

Type

I

Descri ption

=0, Minimum output (Input,
Fourier analysis, surface Cp)
=l, + Surface Mach No.

=2, + surface g's
=3, + diagnostic output dump

Number of azimuthal output planes

at lobe trailing edge

Number of radial output points at

lobe trailing edge

=0, No output plots

=I, Summary plots

=2, + Final grid Cp solution
=3, + potential and Cp for all

grids

Card Type II

Specify NSTA cards of input data (Program will read to end of file)

Column Item Type

l-lO STA(1) I

ll-20 RID(1) I

21-30 REL(1) I

31-40 ROD(1) I

41-50 RFV(1) I

51-60 XPCNT(1) I

Descri ption

Axial Station, in

RID, Centerbody/plug radius, in.

R crown, lobe crown or maximum radius,
in.

ROD, Fan cowl radius, in.

RFV, lobe fan valley or minimum radius,
in.

e/O , Percent of half lobe angle to

radial side-wall plane (input some
dummy value for axisymmetric problems)
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D. Sanple Input (JTSD-209 Forced :lixer)

INPUT ECHO (CARO IMAGE)
I0 20 30 40 50 60 70 80

COL 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

1

Z
3 IZ 6

4 38.1

CARO 5 36.5
6 129 129

7 3 500

8 1.50
9 0 e

CARD 10 1 9

11 0.30000

IZ 0.50000

13 0.70000

1_ 0.90000

CA_O 15 1.10000
16 1.30000

17 1.$0000

18 1.70000

19 1.90000

CARD ZO 2.10000
21 2.30000

22 2.50000

_3 2.70000
_4 2.90000

CARD 25 3.10000

26 3.30000

27 3.50000
_8 3.70000

29 3.90000

CARD 30 4.10000
31 4.30000

32 4.50000

33 4.61300
34 4.90000

CARD 35 S.10000

36 5.30000
37 5.50000

38 S.70000

39 5.90000

CARD 40 6.10000
41 6.30000

42 6.50000

43 6.70000

44 6.90000

CARO 45 7.10000
_6 7.30000

47 7.50000

48 7.70000

49 7.90000

CARO 50 8.I0000

FLOtlIX TEST CASE

JTSO MIXER NOZZLE 5tlOOTHED OATA (46 EQUALLY SPACED POINTS)

1360.0 1.4 53.3 14.5

519.7 1.4 53.3 1.0

0.0 10.0 4.3

400 300

0 0.0

20

1 37000
I 37000

1 37000

1 37000

1 37000

1 37000
1 37000

1 37000

1 37000

1 37000

1.37000

1.37000

1.37000

1.37000

1.37000

1. 37000

1.37000

1.37001
1.37027

1. 36046

1.33175
1.29Z93

1.26135

1.157_8
1.08316

1. 00883

0.93437
0.85979

O. 78520

6.71067

0.63636

0.56219

e.4ee6o

0.416Z3

0.34_48
0.27501

0.20645

O. 13948
0.07433

0.01003

Z.50308 3.59qql 2.72835 .5

2.50220 3.60_73 2.73194 .5

Z.49995 3.59_08 Z.73019 .5
2.49682 3.58596 2.72254 .5

2.49372 3.56682 2.70907 .5

2.4qZ10 3.54987 Z.68888 .5

2.49592 3.53214 2.66104 .5
2.50770 3.51697 2.62474 .5

2.54077 3.50459 Z.57560 .5

2.60664 3.49427 2.51038 .5

2.68690 3.4S539 2._3535 .5

2.76950 3.47558 Z.35800 .5
Z.84437 3.46476 2.27979 .5

2.91311 3._5_0 2.Z0069 .5

2.97525 3.43847 2.12076 .5
3.030_4 3.42368 2.04014 .5

3.07743 3._071_ 1.95911 .5

3.11496 3.39006 1.87790 .S

3.14233 3.37188 1.79665 .5
3.15891 3.35311 1.71544 .5

3.16393 3.33430 1.63440 .5

3.15617 3.31538 1.55361 .5

3.1_600 3.30_70 1.50800 .5

0.0 3.27834 0.0 .5

O.O 3.26075 0.0 .5
0.0 3.24317 0.0 .5

0.0 3.22710 0.0 .5

0.0 3.Z1132 0.0 .S

0.0 3.19571 0.0 .5
0.0 3.18172 0.0 .5

0.0 3.16774 0.0 .5

0.0 3.15439 0.0 .5

0.0 3.14216 0.0 .S
0.0 3.12992 0.0 .5

0.0 3.11836 0.0 .5

0.0 3.10742 o.o .5
o.0 3.0q663 0.0 .5

o.0 3.0_634 0.0 .5

0.0 3.07611 0.0 .5

0.0 3.06597 0.0 .5

COL 123456789 123456789 123456789 123456789 123456789 123_56789 123156789 123_56769
10 ZO 30 40 50 60 70 80
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E. Subroutine Definition for FLO_IX Program

C

C

C WELCOME TO FLOHIX, THE AXIS_MM[TRIC POTEHTIAL FLON ANALYSIS. THE

C 6UOERLEY-VOH KARttAN TR_IC SMALL DISTURBANCE EQUATION IS THE

C GOVERNING PARTIAL DIFFEREHTIAL EQUATION. THE OISCRETIZED

C FORI_JLATION IS BASED ON A FINITE VOLUME CONSERVATION OF MASS
C FLUXES. THE BOUNDARY CONDITIONS ARE APPLIED ON THE EXACT SURFACE.

C A HONCOHSERVATZVE SUOCK POINT OPERATnq TS AVAILABO.E IN LIF.U _,r

C THE DEFAULT CONSERVATIVE OPERATOR. THE CONFIGURATIONS IdHICH
C CAN BE AHALYSEO INCLiJOE STIHG-MOUHTED OR FINITE LEHGTH NACELLES

C )':TH OR WITHOUT A CENTERBODY. BOTH FREESTREAH OR WIND TIA'_EL

C COI_)ZTIONS CAN BE SIMULATED. AH ACTUATOR DISK IIOOEL IS USED TO
C SIMULATE POWER ADDITION TO THE FLOM. GRID REFINEMENT AHO

C EXTRAPOLATION TECHNIQUES ARE USED TO ACCELERATE CQHVERGEHCE.

C

C THE MAIN ROUTINE COHTAINS THE BASIC STRUCTURE OF THE PROGRAM.
C

C ROUTINES CALLED:

C ECHO - ECHOS CARl) IMAGE INPUT

C FORHIX - RE/d0S THE SPECIFIED DATA FILE, OR HELPS THE USER CREATE
C A HEN DATA FILE WHEN ONLY THE COHTOUR IS GIVEN.

C EBC - CALCULATES THE POSITION OF THE DOt4HSTREAN BOUHOARY AND THE

C DOiiNSTREAM MACH HUtlBERS FOR EACH STREAM.

C GRID - GENERATES A CARTESIAN MESH FOR THE DEHSEST GRID.

C XRSUS$ - GENERATES COARSE GRID SUBSETS OF THE DENSEST GRID,
C AS WELL AS CALCULATING COARSE GRID VALUES OF VARIABLES
C SUCH AS IMAX, JMAX, IH, AHO ITE.

C BCSETS - GEHERATES THE ARRAYS WHICH ARE USED TO ESTABLISH THE

C EXACT SURFACE BOUNDARY COFmITIOIt5.

C PGUESS - GENERATES AN INITIAL GUESS FOR THE POTENTIAL, PHI. THE

C GUESS IS ORTAINED EITHER FRON A SAVED SOLUTION, THE
C SOLUTION FROM THE PREVIOUS GRID, OR A GIVEN FUNCTIONAL
C FORM.

C INITL - SETS UP INITIALIZATION FOR EXTRAPOLATED RELAXATION
C FARFLD - GENERATES THE FAR FIELD BOL_ARY COFI)ZTIOHS. THIS

C SUBROUTINE IS IHCLUOED IN THE RELAXATION SWEEPING LOOP TO
C ALLON FOR PERIODIC UPDATING BASED ON THE CIRCULATIOH.

C SLOR - PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR

C EACH COLUMN IN THE CARTESIAN MESH, A TRIDIAGONAL MATRIX

C IS SET UP AND SOLVED. THE CORRECTIONS ARE APPLIED WITH

C AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOW, AHO AN

C rAiDER-RELAXATION FACTOR FOR SUPERSONIC FLOW. k_IEN

C THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.

C UPDATE - UPDATES CORRECTIOHS FOR NEXT SHEEP THROUGH RELAXATION LOOP
C RESCL] - CALCULATES RESIDUES FOR EACH SWEEP THROUGH RELAXATION LOOP

C OUTPUT - CALLS THE VARIOUS OUTPUT SI._ROUTINES THAT APPLY
C TO EACH ORID. THESE INCLUDE THE CP PLOTS, THE MASS

C FLOW INTEGRATIONS, AHO THE DRAG CALCULATION.

C FINISH - PROVIDES A SUMMARY OF THE ANALYSIS, AND k_ITES
C INFORMATIONS TO A FILE FOR FUTURE CALCULATIONS.

C RECOM8 - RECOMBINES EACH HARIIOHIC SOLUTION INTO ONE SOLUTION

C PJMPLT - PLOTS THE JUMP IN PHI OVER ALL ITERATIONS
C

C
C

C

ROUTINES CALLED BY:

CN.NNN_W_N_MNNNMNNN_NNNMM_NMNN..lt_NN_NNNMNNMNNNmNNN.IIt,NNN_CfdA.N414(4

SUBROUTINE ECHO

C

C CARD IMAGE INPUT ECHO

C

C ROUTINES CALLED BY:
C FLOMIX PROGRAM
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CWUhnN_UHHNHN_mmm_mmWmmUmH_ _WmN_H_m_Ut_W

SUEROUTZHE FORMZX( 114E, AXIT LT |
C

C FGRMIX 00ES THE FOLLOIdIHG:

C (1) READS THE LOBE CROSS-SECTION GEOMETRY DATA FROM R. NILE¥_S
C PROGRAM.

C (2) FORMS A SERIES OF POTNTS AT EQUAL INTERVALS OF ANGLE PHT

C TO 0EFZNE THE LOBE CROSS-SECTION FOR FOURIER DECONPOSITZON.

C (3) FORMS A FOURIER 0ECOMPOSITZOH OF A SELECTE0 CROSS-SECTTON.

C [4) RECREATES THE MIXER CROSS-SECTION USZHG A SELECTED HUMBER OF
C TERMS OF THE FOURIER EXPAHSTOH.

C f S) GIVES A TEKTRONIX SCOPE PICTURE OF THE MIXER CROSS-SECTZOH

C AI_) THE FOURTER REPRESEHTATION.

C (6) CALCULATES A TABLE OF THE MIXER CROSS-SECTION VALUES,

C CORRESPOHOZHG FOURIER VALUES, ABSOLUTE ERRORS DETNEEN
C CORRESFq3flOZHG VALUES, AHO GIVES THE RMS ERROR AH9 MAX. ADS.

C ERROR FOR THE CROSS-SECTION.
C

C OUTPUT ARGUMENTS:

C THE - THETA ANGLES

C AXTTLT - PLOT TITLE
C

C ROUTINES CALLED: LOBGEN, EQANGS, FOREGO, FORVAL, RMTHPT, REPLZC,
C OUT3D, LAMDAS

C LOBGEN - CALCULATES MIXER LOBE SHAPES AND CROSS SECTIONS

C EQAHGS - COMPUTES THE SERIES OF (Z,Y) PAIRS kqtTCH DESCRIBE THE

C SHAPE OF A DIFFUSER LOBE FOR A FOURIER OECOMPOSITZOH OF
C THE SHAPE INTO ITS FREQUENCY REPRESENTATZOH.

C FOREGO - COMPUTES THE COEFFICIENTS OF THE FOURIER SERIES

C REPRESENTATION OF R VS. ARC. ONE LOBE OF A DIFFUSER
C CROSS-SECTZOH IS THUS APPROXZMATEO FROM PHT=-THETA TO

C PHI=THETA.

C FORVAL - COMPUTES THE VALUE OF A FOURIER SERIES AT ARCS USING NTERM
C TERMS ZN THE EXPANSION

C RNZHPrr - PERFORMS READING OR HRITZIqG OF USER INPUT

C REPLIC - REPLICATES THE SIHGLE LOBE REP_ESEHTATTVE THTO A MIXER

C CROSS-SECTIONAL VIEEI
C OUT30 - CREATES 30 OUTPUT FILE FOR 'MOVIE' PLOTTING

C LAMOAS - CALCULATES AHO PLOTS L_MBOAS AFt) LAMBOA PRIMES
C

C RQUTIHES CALLE0 BY:

C F L(NIIX PROGRAM

C Nm_HHJm _N tt NmmttH tt _tF_Nm _IFMmN414_m_N_tHHN_ _m_NNNNN_H_m

S_ROUTZH_ RIdTHPT ! AXTTLT, XPCHT, STA, ISHAPE, ALF, THE, EY, EZ, RE, FY, FZ,
RF, ZRNOPT )

C
C THIS SUBROUTZHE PERFORMS READIHG OR 14RTTIHG OF USER INPUT.

C
C ZHPUT AND OUTPUT ARGUMENTS:

C AXITLT,XPCNT, STA, ISHAPE pALF, THE, EY, EZ, RE, FY, FZ,RF

C ZRklOPT - READ,/I,_ZTE OPTION
C : 0, READ

C : 1, 14RITE

C

C ROUTTHES CALLED BY:
C FORMZX - READS THE SPECTFTED DATA FTLE, OR HELPS THE USER CREATE

C A HEM DATA FILE WHEN OHLY THE COHTOUR IS GIVEH.

_J_R_I_______N_. __._._ ( XF F, YFF, ZF F _PF, I_L, N_TA, NTOT L )
C

C CREATES 30 OUTPUT FILE FOR 'MOVIE' PLOTTING

C
C INPUT ARGUMENTS:

C XFF - X COOROZHATES
C ¥FF - y COORDIHATES

C ZFF - Z COORDZHATES

C PF - COMPLEX ARRAY FOR Y ANb Z
C ZAHL - ARRAY ZDEHTIFYIHG STAT_OHS THAT WERE AHALYZEO

C HSTA - 140. OF STATIOHS

C HTOTL - 140. OF POTHTS ABOUT A LOBE

C
C ROUTZHES CALLED:
C REPLIC - REPLICATES THE SINGLE LOBE REPRESEHTATZVE INTO A MIXER

C CROSS-SECTIONAL VZEN

C

C ROUTZHES CALLED BY:

c VORMZX 4g



C It tHH_M _ _ _tt N4t llM NI_ MIHJM Mtk_tmMMmNmNm M_ MmM_HMN_M_m_m__

SI._ROUTINE AREA(XO,N,APRZ,AFAH,AGAP,PEN,NLOBE,HST,TERR )
C

C THIS SU6ROUTZNE CALCULATES MIXER AREA ON A HON-VERTZCAL PLANE

C DEFINED BY THE X AXIS ZNTERCEPT, XO, AND ANGLE, M.

C NOTE: POSITIVE 14 IS CCM FROH VERTICAL.
C

C INPUT ARSUtIEHTS:

C XO - X AXIS INTERCEPT
C M - ANGLE

C NLO_E -NO. OF LOBES

C NST - NO. OF LO6E STATIONS

C
C OUTPUT AR6UtIEHTS :

C AF_I - PRIIIARY AREA

C AFAN - FAll VALLEY AREA
C AGAP - GAP AREA

C PEN - AIIIX / ATOT

C ZERR - ERROR COOE (O-NO ERROR, I-ERROR)

C
C ROUTINES CALLED:

C SPLZT - DETERIIZNES THE IHTERSECTZOH OF A PLANE OEFTNED BY

C X-ZHTERCEPT, XO, AND ANGLE, 14., AHO A SPLINE FZT CURVE
C DEFZNIEO FROM VALUE OF IND.
C

C ROUTINES CALLED BY:

C LO6GEN - CALCULATES HZXER LO6E SHAPES AHO CROSS-SECTZOHS
C

CNNMMNMNWNMNNMN.II, temNNM_,WNMmMMMNmMMMNNMMN_M_MN_mMN_MNMM_M_

SUOROUTINIE SPLZT(XO,NI,ZHO,XIpR ,NGT)

C
C THIS SUBROUTINE OETERIIZNES THE ZHTERSECTZOH OF A PLANE

C D=FZNE BY X ::.'TERC_.rT, XO, AHO AHGL[, M., AHO A SPLZNE

C FTT CURVE DEFINIED FROM VALUE OF ZNO.
C ZHO IS USEO IN FU_CTZOH RADIUS(X,Z_D,R) AS AN INDICATOR

C b_ WHICH SPLZNE FIT IS TO BE READ.

C
C ZNPUT ARP_.RtENTS:

C XO - X ZNlTERCEPT

C 14 - ANGLE

C ZHO - SPLINIE FIT INDICATOR
C FIST - NO. OF LOBE STATIONS

C

C OUTPUT ARGUtlEHTS:
C XI - X INTERSECTION

C R| - INTERSECTION RADIUS

C
C ROUTZNIES CALLED:

C RADZUS- EVALUATES SPLINIE FIT CURVES AT SPECIFIED LOCATIONS

C
C ROUTINES CALLED BY:

C AREA - CALCULATES HIXER AREA OH A HOH-VERTZCAL PLANE DEFINED

C BY THE X AXIS INTERCEPT, XO, AND ANGLE, W.

C NNN N NN'mt_ NMMNN M U.mNII.MmMIlt(,M._mN_N U MN_ N _N _ _ _M_M_ m _ _ MM_ _M_

REAL FUNCTION ZP_Z(X,Y)

THZS FUNCTION EVALUATES IIIXER R_IIIkRY LOBE 14IDTH AT AXIAL STATZOH X
AI_ HEZGHT Y o

USED AS F(X) FOR SIHPSONIS RULE IHTEGRATZOH.

INPUT ARGUIIENTS:

X - AXIAL STATZOH
Y - HEIGHT

OUTPUT AREUttEHTS:

ZPRI - HIXER PRIttARY LOBE 14IDTH

ROUTINES CALLED:

GEOH - CALCULATES VERTICAL SECTION GEOMETRY

ROUTINES CALLED BY:

AREA - CALCULATES HIXER AREA ON A HON-VERTICAL PLANE DEFINED BY
THE X AXIS INTERCEPT, XO, AHO ANGLE, 14.
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C toU_I.N_ _N.,ltm1_4t_ NNN_lt(.N_._.mN..l_NNNN_._ N_N_m _NN teHl'_ Im_l'tN']kl_ N_I'_HI 'ljl'_

SUEROUTZNE LOI_;_N( STA, RID, RE L,RFV, RO0, XPCHT' HST' TTRAHS'ALF 'THET'
ByY, BZZ, RBB, CYY, CZZ, ;_CC ]

C

C RADIAL MALL MIXER DECK - OBTAINED FROM D. MZLEY (2-Z3-83)

C
C THIS ROUTZNE CALCULATES HZXER LOSE SHAPES AHI) CROSS-SECTZOHS.

C
C ZNPUT ARGUMENTS:

C

C

C

C
C

C

C

C

C
C

C

C
C

C

C

C
C

C

C

C
C

C

C

C

C
C

STA

RID

REL
RFV

ROD

XPCHT

NST

- STATION X VALUES
- PLUG RADIUS

- ENGZNE LOBE RADZU5

- FAN VALLEY RADIUS

- OUTER CASE RADIUS
- LOBE ANGLE PERCENTAGE

- NO. OF STATZOHS

rKJ'rlxLrT ARGUMEHTS:

ZTRAHS - MIXER SHAPE AT EACH AXTAL STATIOH

ALF
THET

BYY

BZZ
RGB

CYY

CZZ

RCC

- ANGLE TO MIXER MALL

- ANGLE OF HALF A LOBE
- Y COORDIHATE OF CEHTERPOTHT OF LOBE

- Z COORDINATE OF CENTERPOIHT OF LOBE

- RADIUS OF THE LOBE

- Y COORDZHATE OF CEHTERPOZHT OF FAN VALLEY
- Z COORDINATE OF CEHTERPOZHT OF FAN VALLEY

- RADIUS OF FAN VALLEY

ROUTINES CALLED:

BtlFIT - SPLZNE FITS MIXER LINES

GEOM - CALCULATES VERTICAL SECTZOH GEOMETRY
AREA - CALCULATES MIXER AREA ON A HO_-VERTICAL pLANE

ROUTINES CALLED BY:

FORMIX

C
C

C

C

C
C

C
C

C

C
C

C

C
C

C

C
C

C

C

C

C
C

C

C
C

C

SUBROUTZNE GEOM (X,STAtRID,REL,RFV,ROD,XPCHT_ZSTA,ITRANS,ZERR)

THIS ROIJTZNES CALCULATES VERTICAL SECTION GEOMETRY.

ZNPUT ARGUMENTS:
X

STA

RID
REL

RFV

ROD
XPCHT

I STA

- AXIAL STATION TO BE EXAMINED
- STATION X VALUES

- PLUG RADIUS

- E_INE LOBE RADIUS
- FAN VALLEY RADIUS

- OUTER CASE RADIUS

- LO_E ANGLE PERCENTAGE

- NO. OF STATIONS

OUTPUT ARGUtIEh_S:

ITRAN5 - MIXER SHAPE AT STATION X

ZERR - ERROR IHOZCATOR

ROUTINES CALLED:
BEVALE - EVALUATES BMFZT SPLZHES

ARC - CALCULATES VALUES FOR LOBE RADZUS_ FAN VALLEY RADIUS, AND

THE HEIGHT OF THE FAN VALLEY,
RADIUS - EVALUATES SPLZNE FIT CURVES AT SPECIFIED LOCATION

ROUTINES CALLED 6Y:
LOBGEH - CALCULATES MZXER LOBE SHAPES AND CROSS-SECTIONS.
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SUBROUTINE ARC (RS,RFAN)

GIVEN THE SIDE VIEH ENGINE LO_E HEZGHTI RELI, AND A POINT

OH THE RAOZAL MALL_ RS, 14HERE THE E_ZNE LOBE RADIUSt RBZp
Ah_ THE FAN VALLEY RADIUS, RCIp ffJST BE TANGENT, THIS ROUTINE

CALCULATES THE VALUES FOR RBI A_O RCl, AI_ THE HEIGHT OF THE

FAN VALLEY_ RFAN.

INP1rr ARGUtIENTS:

RS - POINT ON RADIAL MALL

OUTPUT ARGUMENTS:
RFAN - HEIGHT OF FAN VALLEY

ROUTINES CALLED:

ROUTZHES CALLED BY:

GEOfl - CALCULATES VERTZCAL SECTION GEOIIETRY

REAL FUNCTION RADIUS(XIN,IHD,STA,RZD,REL,RFV_ROD,×PCNT,ISTA)

THIS FUt_CTION EVALUATES SPLZHE FIT CURVES AT XIN.
I_ ZS USED AS It_ICATOR DEFINING CURVE IDENTITY

ZNPUT ARGUMEntS:

XIH

ZI,'D
STA

RID

REL
RFV

ROD

XPCHT

ISTA

- X VALUE AT I_IICH SPLINE FIT CU_.VES ARE EVALUATED

- II,_ICATOR DEFINING CURVE IDENTITY

- STATION X VALUES
- PLUG RADZU_3

- EHGZHE LO_E RADIUS
- FAN VALLEY RADIUS

- OUTER CASE RADIUS

- LOBE ANGLE PERCENTAGE

- NO. OF STATIDHS

ROUTINES CALLED:

BEVALE - EVALUATES BMFZT SPLINES

ROUTINES CALLED BY:

6EOH - CALCULATES VERTICAL SECTZOH GEOMETRY

DIHENSZOH STA(I)tRID(I),RELII),RFV(1),RCDII),XPCHT(I)
C_"_OH /SPLIHZ/ AR_D(50), BRID(50), CRIO(SO), DRIO(50)I

2 AREL(50), BRELI50), CRELISO), DREL(SOI,

3 ARFV(50), ERFV(SO)_ CRFV(SO), DRFV[50))

4 ARODiSO), 8ROD(50), CROD(50), DROD(50)p
5 APCNT(50), BPCNT(50), CPCNT[50), DPCNT(50)

COtIMON /SLOPE/ RZDIP, RELZP, RFVIP, RCDIP

C

C ZND : |p READ PLUG RADIUS

C : Z_ READ ENGINE LOBE RADIUS

C : 3t READ FAN VALLEY RADIUS
C = _, READ OUTER CASE RADIUS

C
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C_NN_N_NN_NNN_N_NNNUNNNN_NNN_NNNU_N_Nm_mW_NIkI0_

SIJ_ROI.rTIHE EQAHGS (EOA,EAR,FOA,FAR,THETAO,ALPHA,ISIDOP,CURRAO,N,P)

C
C

C

C

C
C

C

C
C

C

C

C
C

C

C

C

C
C

C

C

C

C
C

C

C
r

THIS SUBROUTINE COMPUTES THE SERIES OF (Z,Y) PAIRS WHICH DESCRIBE THE

SHAPE OF A DIFFUSER LOBE FOR A FOURIER OECOHPOSITIOH OF THE SHAPE

INTO ITS FREQUENCY REPRESEHTATICI_.

INPUT:

BOA

EAR
FOA

FAR

THETA0

ALPHA

ISIDOP

CUR_aO

H

= Y-DISTANCE TO CENTER OF CIRCULAR ARC AT THE PEAK,

= RADIUS OF THE CIRCULAR ARC AT THE PEAK,

= Y-DISTAHCE TO CENTER OF CIRCULAR ARC AT THE VALLEY,

=RAOIUS OF THE CIRCULAR ARC AT THE VALLEY,
= ANGLE FROM THE PEAK TO THE VALLEY,

= ANGLE TO THE EHO OF THE UPPER ARC AND THE START OF THE

LOWER ARC

= SIDE LOBE GEOMETRY OPTION

= SIDE LOBE RADIUS IF CURVED GEOMETRY (ISIDOP=Z)
= TOTAL NUMBER OF POINTS FROM THE PEAK TO THE VALLEY EQUAL

SPACED IN ARC LEHGTH.

OUTRrr:

P(I) = (Y,Z) PAIRS DEFINING OHE LOBE OF THE MIXER FROM

ROUTINES CALLED:

ROUTIHES CALLED BY:
FORMIX

_R0UTZN_ LAMAS(I_L)

CALCULATES AHO PLOTS LAMBDAS AND LAMBOA PRIMES

INPUT ARGUMENTS:
IANL - ARRAY IDEHTIFYII_ STATZOI_ THAT WERE AHALYZEO

ROUTIHES CALLED:

BMFIT - PERFORMS A SPLINE FIT OF THE USER LAtIBOAS
BEVAL - PERFORMS AN EVALUATION BASED ON THE SPLINE FIT

ROUTINES CALLED BY:
FORMIX
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C

C

C

C

C
C

C

C
C

C

C

C

C
C

C

C

C
C

C

C

C
C

C

SUBROUTINE FOREGO(NPL,PpARSIN,BRCOS,AZR,E_R)

THIS SUbrOUTINE COt_PUTES THE COEFFICIEHTS OF THE FOURIER SERIES

REPRESENTATION OF R VS. ARC. ONE LOBE OF k DIFFUSER CROSS-SECTIOH

IS THUS APPROXIMATED FROM PHZ=-THETA TO PHI=THETA.

INPUT:

HPL

P(I)

= EVEN NI.R_ER OF DATA POINTS.

= (Z,Y) PAIRS, I=I_...,NTOTL.

OUTPUT:

ARSZN = INPL/Z-I) COEFFZCZENTS FOR THE SINE TERMS OF THE EXPANSION

ERCDS = (NPL/Z-I) COEFFICIENTS FOR THE COSINE TERMS OF THE

EXPANSION
AZR = CONSTANT TERM IH THE SERIES.

B_ = COEFFZCZEtiT BNZ OF BHR*COS(NTOTL./2UOELPHZ), NHERE

DELPHI = 6.Z8318*(K-|)/NPL, K=I,Za..._NPL.

ROUTINES CALLED:
SERIES - DETERMINATION OF COEFFICIENTS IN SERIES

ROUTINES CALLED BY:
FORMIX

C

C

C
C

C

C
C

C
C

C

C
C

C

C

C
C

C

C

C

SUBROUTINE FORVAL (HTERM,ANGL,ACOEF,BCOEF,AZ,FVAL,BNR)

THIS SUBROUTINE COMPUTES THE VALUE OF A FOURIER SERIES AT ARCS

USIV_ NTERH TERMS IN THE EXPANSION.

INPUT:
NTERM : NLA'_ER OF TERMS USED IN THE EXPAHSION.

AHGL : ANGLE TO BE EVALUATED
ACOEF(I) = COEFFICIENT OF COSIHE TERMS, I=|,...,HMAX.

BCOEF( Z ) = COEFFZCIEt_ OF SINE TERMS, 1=1D.. • ,H_IAX.

AZ = CONSTANT TERM Ztl THE SERXES.

OUTPUT:

FVAL = VALUE OF THE EXPANSION.

ROUTINES CALLED:

ROUTINES CALLED BY:

FORMIX

C

C

C
C

C

C
C

C

C
C

C
C

C

C

C
r"

SUBROUTINE REPLIC (PF,NTOTL,HLOBE,IP,ZSD,XF)

SUSROUTIHE REPLIC REPLICATES THE Slh_lE LOBE REPRESENTATION INTO
A MIXER CROSS-SECTIONAL VIEN.

ZNPUT:

PFfZ)

IP
I3D

NTOTL
XF

= (ZF,YF) PAIRS, I=I,...,HTOTL.
= STATION It_ICATOR

= SIt_LE OR TOTAL STATION REPLICATION INDICATOR
= 1'10. OF PAIRS
= STATION LOCATIOHS

ROUTINES CALLED:

PLTEK2

ROUTIHES CALLED BY:

FORrlIX
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C

C

C

C

C

C

C
C

C
C

C

C

C

C

C
C

C

C

C
C

C

C

C
C

C

C
C

C

C

C

C

SL_ROUTZNE SERIES (Y,N,kZ,A,B,AH,YY,Z,M)

DETERHZHATION OF COEFFICZEHTS IN SERIE. e

INPUT:

Y[K)

OUTPUT:

AZ

k

B

AN

YY
Z

: INPUT VALUE OF FUHCTZON AT AN AHC_LE OF TK:_._PI_IK-I)/H

FOR K:| TO K:N

PZ : 3.J_5927 .....
: EVEN HUIIBER OF INPUT FUHCTZON VALUES II_JST EXCEED Z)

= CONSTANT TERM IN SERIES

= (H/2-!) REAL OUTPUT VALUES OF COEFFZCIEHTS ZN COS SERIES

: 114/2-1) REAL OUTPUT VALUES OF CO!!FFZCIENTS IN SINE SERIES

= CDSZNEIN/2*TK) TERtl IN SERIES
= OUt&IT STORJLGE OF LENGTH N+Z (REAL|

= DLJt91Y STORAGE OF LENGTH 2_N (REAr)

M : OUtnlY STORAGE OF LEtIGTH N (REAL)

L=N/2-1
Y( K )=kZ+ SUtl ( A( L )_COS( L_TK ]+B( L )_SIN( LW:K ) )*/d4_COS( H/Z*TK )

L=]

ROUTINES CALLED:

RFAST - FAST FOURIER TRANSFORM OF REAL D_TA

ROUTINES CALLED BY:

FOREGO - CO,PUTES THE COEFFICIENTS OF THE FOURIER SERIES

REPRESENTATION OF R VS. ARC. 0_ LO_E OF A DIFFUSER CROSS

SECTION IS THUS APFROXZPL_TED FRC_ FHZ=-THETA TO PHI=THETA.

C
C

C

C

C
C

C
C

C

C

C
C

C

C
C

C

C

C
C

C

C

C
C

SU_RO'JTINE SERZHV(Y,N,AZ,A,B,AH,YY,Z_M]

REVERSE OF 'SERIES'

INPUT:

Y(K) = INPUT VALUE OF FUNCTION AT AN /d_GLE OF TK=Z._PI_(K-I)/N

FOR K:| TO K:N
PI = 3.1415927 .....

= EVEN HI._IBER OF INPUT FUt_TZOH VALUES IHUST EXCEED Z)

DLrrPUT:

AZ
k

B

AN
YY

Z

N

= CONSTANT TERM IN SERIES

= IH/2-J) REAL OUTPUT VALUES OF CCEFFZCZENT5 IN COS SER_ES

= (N/Z-I) REAL OUTPUT VALUES OF CCEFFICIENTS IN SIHE SERIES
= COSIHEIN/2*TK) TER_ IN SERIES

= DIJ_Y STORAGE OF LEHGTH N+2 (RE_L)

= DUt_Y STORAGE OF LENGTH 2_N (REAL)

= DUt_Y STORAGE OF LEt_GTH N (REALi

ROUTINES CALLED:

RFASTZ - REVERSE OF 'RFAST'

ROUTINES CALLED BY:
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C

C

C

C
C

C

C
C

C

C

C
C

C

C

C
C

C

C

C
C

C

C

C

C
C

C
C

C

C

C
C

C

SUEROUTINE RFAST(X,Y,N,Z,N,S)

FAST FOURZER TRANSFORM OF REAL DATA

ZNPUT:

X
N

S

= N REAL ZNPUT VALUES

= EVEN HUMBER OFZHPUT VALUES (I'AJST EXCEED 2)
= SZGN CDNTROLLZNG DZRECTZON OF TRAI_FORM

OUTPUT:

Y

Z
N

= N/2_1C_IPLEX OUTPUT VALUES

= OtJt,_Y STORAGE OF LENGTH 2N (REAL)

= DUMMY STORAGE OF LENGTH N (REAL)

THZS PROOUCES 'OUTPUT ¥' FROM 'ZNPUT X', NHERE

tN_N_N_N_NUN_NNNm_U_N_N_m_NmN_NmN_UNNNNNNNUN_NN_U_N

K=N

Y(J)=StJM X(K)_EXP(SZGN(I.PS)_Iw2wPZW(J-|)_(K-I)/N!
K=!

NZTH _=$_RTf-I) A_ P_:3.1_59 ........

NOTE THAT ¥(N-J_Z)=CONJ(Y(J)I FOR J=| TO J=N/Z_I
THUS ONLY Y(I) TO Y(N/Z_|) ARE CALCULATED

COMPLEX _'U_BERS ARE HA_LED ZN FORTRAN _ C_NENTZON, NAMELY THE
REAL AbE) Z_AGZNJU_¥ PARTS ARE STORED ZH ALTERNATE CELLS, STARTZFI_

NZTH THE REAL PART OF Y(|] ZN THE FZRST LOCATZOH, ETC.

ROUTZNES CALLED:

FAST - FAST FOURZER TRANSFOR_ OF COMPLEX DATA

ROUTZNES CALLED BY:

SERZES - DETER.ZNATZOH OF COEFFZCZEHTS ZN A SERZES

SUBROUTZNE FAST (X,Y,N,Z,N,S)

FAST FOURZER TRAHSFOR_ OF COMPLEX DAT_

INPUT:

X

N

OUTPUT:
Y

Z

N
S

= N ZNI_IT VALUES (COMPLEX)

= t,R.RIBER OF VALUES

= N OUTPUT VALUES (COMPLEX)
= DUMMY STORAGE OF LENGTH _N (COMPLEX)

= OlJ_/1Y STORAGE OF LENGTH H (COMPLEX)
= SZGH COHTROLLZNG DZRECTZON OF TRAHSFOR_

THZS PROOUCES 'OUTPUT Y' FRO:I 'ZNPUT X', NHERE

K=N

Y(J)=SUIt X(K|_EXP(SZGH(1.,S)_Z_Z_PZ_(J-I)_(K-I)/N)

K=|

ROUTZNES CALLED:

ROUTZNES CALLED BY:
RFAST - FAST FOURZER TRANSFORN OF REAL DATA

RFASTZ - REVERSE OF 'RFAST'
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SUBROUTINE EBC
C

C CALCULATES THE PDSTTZOH OF THE DOI_NSTREA/_ BOUltOARY AND THE DOI_tSTREAkl
C MACH HUt_ERS FOR EACH STREAM.
C

C IHPUT AERO DATA:

C PT|, PT2, PZNF_ TTJ, TT2, 6AMJ, DAM2, RI, R2
C

C OUTPUT ARGUMENTS:

C EHIS - PRIItARY STREM1 MACH NO. FOR THE SPLITTER

C EM2S - SECONDARy STREAM MACH NO. FOR THE SPLITTER
C

C ROUTIHES CALLED:

C HAF - SEARCH ROUTINE USED BY EBC
C

C ROUTINES CALLED BY:
C FLOMIX PROGRAM
C

SUBROUTINE HAF(MAX,MIH,X,Y,ZC,ZER|

THIS ROUTINE IS A SEARCH ROUTINE FOR EBC.

INPUT ARGUMENTS:

MZH - MINIMUM VALUE OF OUTPUT PARAMETER FOR SEARCH

MAX - MAXIMUtl VALUE OF OUTPUT PARAMETER FOR SEARCH
X - CURREHT VALUE OF OUTPUT PARAMETER DURING SEARCH

Y - INPUT PARAMETER TO BE MATCHED

IC - 1, INPUT PARAMETER IS SPLITTER SECOFS)ARY FLOM AREA

- 2, INPUT PARAMETER IS COMP_XJHO FLOt4 FUHCTIOH, 8ETA
- 3, INPUT PARAMETER ZS SECOHOARY FLOM RATE

OUTPUT ARSUMEHTS:

X - IC:I, OUTPUT PARAMETER IS SPLITTER STATIC PRESSURE
- IC=2, OUTPUT PARAMETER IS NOZZLE EXIT STATIC PRESSURE

- ZC=3, OUTPUT PARAMETER ZS DOIdHSTREAM BOUNDARY STATIC PRESSURE
IER - ERROR IHOICATOR! 0 IS O.K., I IS NO CONVERGENCE IH 20 TRIES.

ROUTINES CALLED:

ROUTZNES CALLED BY:

EBC - CALCULATES THE POSITION OF THE DOWNSTREAM BOUHOARY ANO THE
DOI4NSTREN1 MACH NUMBERS FOR EACH STREN1

CIIltttttI_It_NttttHtI_tlINNtttNNtIIIIIth_tliltIttNtNIINII INi

SU_ROUT ItlE GRID

C
C

C

C
C

C
C

C

THIS SUBROUTINE GEHERATES A CARTESZAH M[SH FOR THE DENSEST GRID.

ROUTINES CALLED:

ROUTIHES CALLED BY:
FLOMZX PROGRAM
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C_MMMMMM'NN'_I'MMMM MMMMMMMMM,]kI_MM_MWMm_MMmMMMMM_MMMM_WNmMMM

.SUBROUTZNE XRSUBS
C
C

C

C

C

C ROUTZHES CALLED:
C

C ROUTZNES CALLED BY:

C FLOffZX _OGRAM
C

THZS SU_ROUTZNE GENERATES COARSE 6RZD SUBSETS OF THE DENSEST 6RTD,
AS NELL AS CALCULATZNG COARSE GRZD VALUES OF VARZABLES
SUCH AS ZPIAX, JPIAX, ZH, AND ZTE.

C

C

C
C

C

C

C
C

C

C

C

C

THZS SIJBROUTZNE GENERATES THE ARRAYS MIIZCH ARE USED TO ESTABLZSH THE
EXACT SURFACE _ARY COHOZTZOHS.

OUTPUT ARGUMENTS:

XHTR - X ZNTERPOLATED SURFACE COORDZHATES FOR CPPLOT

RHTR - R TNTERPOLATED SURFACE COORDTNATES FOR CPPLOT
ZI'IXZNT - HO. OF VALUES ZN X AND R FOR EACH SURFACE

ROUTZNES CALLED BY:
F LoMIrX PROGRAM

C_I'mNMtd.M Met NMMMtt MMM,)(.MMMMNM,K, MMMN mMINNNm_m_Mm_

C COHTOUR BOUI,mAR ZES

C L = | - CEHTERBOOY
C : E - ZHTERNAL SPLTTTER

C = 3 - EXTERNAL SPLZTTER

C = 4 - NOZZLE

C

C_,l_M.It MMM.I_.MM_.NMMMMMMN,_ MMMM_ M_ MM M_M_ MMM_M_MMMMM M_MM_MM

Sb_ROUTZNE PGUESS
C

C

C
C

C

C ROUT'rHES CALLED:
C

C ROUTIHES CALLED BY:

C FLOHZX PROGRAM

C

THZS SUI_I_OUTZNE GEHERATES AN ZHZTTAL GUESS FOR THE POTEHTZAL, PHZ.

THE GUESS ZS OBTAZHED EZTHER FROM A SAVED SOLUTZON, THE
SOLUTION FROtl THE PREVIOUS GRID, OR A GIVEN FUNCTIONAL FORM.

C

C
C

C

C
C

C

C

C
C

C

C

SUBROUTINE PLTGRD ( XHTR, RHTR, ZHXTHT )

THIS ROUTINE HAI_)LES GRID PLOTTING

ZNPUT ARGLqIEHTS:

XHTR - X ZHTERPOLATED SURFACE COORDTNATES FROfl BCSETS

RNTR - R TtlTERPOLATED SURFACE COORDZNATES FROM BCSETS
IMXZNT - NO. OF VALUES ZN X AND R FOR EACH SURFACE

ROUrZNES CALLED: PLTEK2

ROUTZHES CALLED BY: FLOHIX PROGRAM
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C

C THIS SUBROUTINE SETS UP INITIALIZATION FOR EXTRAPOLATED RELAXATION.
C

C ROUTINES CALLED:
C

C ROUTINES CALLEO BY:

C F LC.*:IX PROGRAM

C
C I. ZF AN EXTRAPOLATION DOES NOT OCCU_ WITHIN INSTEP SWEEPS, AN

C EXTRAPOLATION WILL BE FORCED. AT THIS POIHT A NEW TOLJflP

C COEFFICIENT WILL ALSO BE COMPUTED.

C 2. ZXTRAP - A SWEEP COUHTER FOR COtIPARISON WITH INSTEP
C 3. AT LEAST INOJHP SWEEPS WILL OCCUR BETWEEN EXTRAPOLATIOHS.

C 4. TOLJMP - A COEFFICIENT WHICH IS IIULTIPLIED BY THE STAHDARO

C DEVIATION OF THE DISTRIBUTION OF CORRECTIONS OVER THE MATRIX FOR

C A GIVEN SWEEP.

C THE ABS. VALUE OF THE AVERAGE CORRECTION IS COtIPAREO WITH TOLJMP

C TIMES THE STAHE)ARO DEVIATION.

C 5. NSTEPS - THE NU_IBER OF HOOES IN THE GRID.

C CALCULATIOHS.
C 6. XLAHS - THE SUM OF THE RATIOB OF THE CORRECTIOi_P3 WITHIN EACH

C SWEEP.
C 7. RLAIIS$ - THE SUI1 OF THE SQUARES OF THE RATIOS OF THE CORRECTIOI_P3

C WITHIN ANY GIVEN SWEEP.

C _.._LA_IS - THE S'_" U.= TH=- CORRECT;'_ OVER ANY :I%'EN Si4_EP.
C 9. ISTEP - A COUNTER WHICH IS COMPARED WITH INDJtIP AHO RESET TO !

C WHEN AN EXTRAPOLATION TAKES PLACE-

C I,,. WSWAVE - THE NtRIBER OF SWEEPS USED It_ CALCULATING THE AVERAGE

C RESIDUAL FOR AH EXTRAPOLATION.
C 11. ISWAVE - A COUNTER FOR COMPARISON WZ_H NSWAVE.

r"

SUBROUTINE SLOR

THIS SUBROUTINE PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR

EACH COLUMH ZH THE CARTESIAH flESH, A /RIDIAGONAL tIATRI×

ZS SET UP AI_) SOLVED. THE CORRECTIONS ARE APPLIED WITH

AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOW, A_ AN

UNOER-RELAXATZON FACTOR FOR SUPERSONIC FLOW. WHEN
THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.

ROUTINES CALLED :
MATRIX - SETS UP THE MATRIX OF COEFFICIEh'I"S RESULTZNG

FROM THE PARTIAL DIFFEREHTIAL EQUATION AHO THE BOUHOARY

CONDITIONS. THE RwPIIIR RULE FOR THE CENTERBOO¥ AND THE

OUTER BO_ARY IS INCLUDED IN THE MATRIX TO SI_'IPLIFY THE
LOGIC FOR VARIABLE COLUMN LENGTHS. AT SOME FUTURE DATE

ZT l'_ItyBE CHANGED FOR THE SAKE OF EFFICIENCY.

TRIDI - SOLVES A SET OF N TRIDIAGONAL EQUATIONS AS OBTAIHEO IN
THE MAIN PROGRAM FOR A RADIAL COLUMN.

ROUTINES CALLED BY:

F LOPIIX PROGRAM

SUBROUTINE FARF LD
C

C

C
C

C

C ROUTINES CALLED:
C

C ROUTINES CALLED BY:

C FLOtlIX PROGRAM

THIS SUBROUTINE GENERATES THE FAR FIELD BOL_AR_ CONOITIONS. IT IS

INCLUDED IN THE RELAXATION SWEEPING LOOP TO ALLOW FOR PERIODIC
UPDATING BASED ON THE CIRCULATION.
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SUBROUTINE MATRIX

C

C THIS SUBROUTINE SETS UP THE MATRIX OF COEFFICIENTS RESULTING

C FROM THE PARTIAL OZFFERENTZAL E_JATZON AND THE BOUHOARY
C CONDITIONS. THE RmPHIR RULE FOR THE CEHTERBOOY ANO THE

C OUTER 8(XJNOARY IS ZNCLtJOED IN THE MATRIX TO SIMPLIFY THE

C LOGIC FOR VARIABLE COLUMN LEHGTHS. AT SOIIE FUTURE DATE

C IT MAY BE CHANGED FOR THE SAKE OF EFFICZEHCY.
C

C ROUTINES CALLED:

C BCABCM - ESTABLISHES BOIJHOARY COHDZTIOH VALUES FOR HATRZX

C COEFFICZENTS A, B, C, AHO H

C POEABC - CALCULATES THE POE MATRIX COEFFICZEHTS A,B, & C, AHD THE
C RIGHT HAND SIDE M
C

C ROUTINES CALLED BY:

C SLOR PERFORMS A SUCCESSIVE LTNE OVER-RELAXATION. FOR

C EACH COLUMN IN THE CARTESIAN flESH, A TRZDIAGONAL MATRIX
C IS SET UP AHO SOLVED. THE CORRECTZOHS ARE APPLIED HZTH

C AN OVER-RELAXATZOH FACTOR FOR SUBSONIC FLON, AI_ AH

C UNOER-RELAXATIOH FACTOR FOR SUPERSONTC FLOM. t_lEN

C THE PI_OPER CRZTERZA ARE MET, AN EXTRAPOLATZON IS CALLED.

CMMNMNMttNNltM_NMMNtMMNN_,.ItM.MN_MNM_U_MMMWm_mm_ mNWl_m_N_m_m_N

SUBROUTINE TRZDZ( A,B,C,VECTOR _M,H )

111Z3 SUBROI.'T.:::E S_-_ES A S-'T OF N T'_.DZAGOHAL EQUAT;OHS A3

OBTAINED ZN THE MAIH PROGRAN FOR A RADIAL COLUMN. THE RESULTS
ARE LEFT ZN THE ARRAY mVECTOR* AND A,B,C AND H ARE DESTROYED.

INPUT:

A
B

C

N
N

OUTPUT:

C

C

C
C

C

C

C

C
C

C

C
C

C

C
C

C

C

C
C

C
C

C

C

C

- NORK VECTOR FOR TRIDIAGONAL EQUATIONS
- NORK VECTOR FOR TRIDIAGONAL EQUATTONS

- MO/_K VECTOR FOR TRIDIAGONAL EQUATIONS
- MONK VECTOR FOR TRZDZAGONAL EQUATTONS

- NO. OF TRIOZAGOHAL EQUATIONS

VECTOR - RESULTZNG ARRAY

ROUTINES CALLED:

ROUTINES CALLED BY:

SLO_ - PERFORMS A SUCCESSIVE LIHE OVER-RELAXATZOH. FOR

EACH COLUMN IN THE CARTESIAN HESH, A TRZDZAGONAL HATRZX
ZS SET UP ANO SOLVED. THE CORRECTIONS ARE APPLIED NZTH

AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOM, ANO AN

UlCER-RELAXATION FACTOR FOR SUPERSONZC FLON. k_IEN
THE PROPER CRITERIA ARE _ET, AN EXTRAPOLATION ZS CALLED.

CMMMMMMMMMMMM_MM_NMMMN_M_MMMM_MM_M_MM_MM_M_MMM_MM_M_Ht

SUBROUTINE RESCL!
C

C THIS SUBROUTINE CALCULATES RESIDUES FOR EACH SMEEP THROUGH RELAXATION

C LOOP.

C
C ROUTINES CALLEO:

MATRIX - SETS UP THE HATRI"X OF CBEFFICZENTS RESULTING

FROM THE PARTIAL DIFFERENTIAL EQUATION AND THE BOUHOARY

COh_)ZTZONS. THE R*PHZR RULE FOR THE CENTERBOOY AI_ THE
OUTER BOUNDARY IS INCLinED IN THE HATRZX TO SZHPLZFY THE

LOGIC FOR VARIABLE COLUMN LENGTHS. AT SO_E FUTURE DATE

IT HAY BE CHANGED FOR THE SAKE OF EFFICIENCY.

ROUTINES CALLED BY:

FLOIIIX P_OGRAN
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CII N NI If,II i111 WIIJI'NII I_ll'ltl IDN II II Hill III11 IN NINNNlltl N| _ NI IHIH Jl ill phi!

SUBROUTZHE POEASC(ZSTR I
C

C THZS SUEROUTZHE CALCULATES THE PARTZAL DZ_FEREHT1rAL EQUATZON

C nATRZX COEFFZCZEHTS, A,B, AND C, AND THE

C RZGHT HAHO SZOEt N.
C

C ROUTZHES CALLED :
C

C ROUTZHES CALLED BY:

C II&TRZX - SETS UP THE IIATRZX OF COEFFZC_rENTS RESULTZHG

C FROII THE PJU_TZAL DZFFEREHT1rAL [QUATXON AND THE BOI._eARY
C COI,,'DZTZOHS. THE R_PHZR RULE FOR THE CENTERDODY _ THE

C OUTER BOIJI_OARY ZS ZNCLUOED ZH THE IIATRZX TO SZIIPLIFY THE

C LOSIC FOR VARZABLE COLLItlPi LE_THS. AT SOME FUTLI_E DATE
C ZT fLAY BE CHANGED FOR THE SAKE OF EFFZCIENCY.

C

CN_NN4f N_ _t_ NI41_W41_41_f4t4_N_tN_aJ_NJm_ mu_mM_

•_ROUTZHE BCABCM( TSTR, TBI, ID )
C

C THZS SUBROUTT.HE ESTABL_rSHES BOUNDARY CONO1rTTON VALUES FOR /'IATRZX
C COEFFZCZEHTS A, B, C, AHO M
C

C INPUT kqGuIqEHTS:

C ZSTR - STREAM FII.RIBER ! |-PRZIIARY, Z-SECOHOARY)

C ZBhlD - BOUNDARY NUIIBER (]-CENT.,2-ZNNER SPL.,$-OUI"ER SPL.,4-NOZZLE)
C

C ROUTZNES CALLED:

C DELTAF - CALCULATES DELTA FUNCTZONS
C

C ROUTZHES CALLED BY:

C IIATRZX - SETS UP THE I'IATRZX OF CQEFFZC1ENTS RESULTZHG

C FROM THE PARTZAL DZFFEREHTZAL EOUATZOH AHO THE BOUNDARY

C COhlDZTTOHS. THE R_PHZR RULE FOR THE C[NTERDO0¥ ANO THE

C OUTER 801JHI)AR¥ ZS ZHCLUDED ZN THE IIATRZX TO SZMPLZFY THE
C LOGZC FOR VARZABLE COLLI_ LENGTHS. AT SOME FUTURE DATE

C ZT MAY BE CHAHGED FOR THE SAKE_ OF EFFZCZEHCY.

CNtilIIttlIFIINtHtl I_N41tlltttlmttlHtll NIIt IiNtllmtllll N_ IIIIHI_It_I

SUGRQUTZHE PLUME
C

C THIS SUBROUTZHE ZS USED FOR COHFZGURZHG THE PLU_.
C

C ROUTIHES CALLED :
C

C ROUTZNES CALLED BY:

C IIATRZX - SETS UP THE IIATRZX OF COEFFZCIEFITS RESULTZNG
C FROM THE PART1'AL DZFFERENTZAL EQUATZON AND THE BOUNDARY

C COHOZTZCt4S. THE R*oPHZR RULE FOR THE CENTERBO0¥ AND THE

C OUTER BOUItDARY 1'5 ZHCLUDED ZN THE I'IATRZX TO SZI'IPLZF¥ THE

C LOGZC FOR VARTABLE COLI.Rtl LEII_THS. AT SOIIE FUTURE DATE
C ZT MAY BE CHAHGED FOR THE SAKE OF EFFZC1"EHCY.
C

SL.mR(:UTZHE UPDATE
C

C THZS SUBROUTZHE CALCULATES THE CORRECTZ(_IHS FOR THE NEXT S_EEP.
C

C ROUTZNES CALLED :

C EXTRAP - CALCULATES THE EXTRAPOLATED _ELAXATTOH FOR THE HEXT Si4EEP
C

C ROIJTZHES CALLED BY:

C Ft._I_[X PROGRAN
C

SUB_Ou'Ir ZHE EXTRAP

C
C THZS SUE,ROUTZH[ CALCULATES THE EXTRAPOLATED RELAXATZOH FOR THE NEXT

C St_EEP.

C
C ROUTIHES CALLED:

¢
C ROUTZHES CALLED BY:

C UFOATE - CALCULATES THE Ct_RECTZOHS FQI_ THE NEXT SMEEP

C
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CNMm_N_LN _N_L NN_N_NW_UNNN _l_ NN_N_N_mNm_NN_NNUNN_MNMUNt_

FUNCTION OELTAF( Z ,J ]
C

C THIS FUNCTZOHS IS USED BY BCABCN TO CALCULATE DELTA FUNCTZOHS.
C

C ROUTINES CALLED BY:

C BCABCM - ESTABLZSHES BOUNDARY COHDZTZON VALUES FOR MATRIX
C COEFF'rCZEHTS A, B, C, AND M
C

C-------*-- .... --------..--...-.-...__. .... ._._._._. .... ____. ......

CMM Mt_N N tt_ _ NM _N _liHH_mm_M_mNmM Mffi _ NN_HH_mWm_

SUBROUTINE OUTPUT( XHTR ,RH'rR, I_IHT )
C

C

C
C

C

C

C

C
C

C
C

C

C
C

C

C
C

THIS SUBROUTINE CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY TO
EACH GRID.

INPUT ARGUIIEHTS:

XNTR - X INTERPOLATED SURFACE COORDINATES FROM BCSETS

RNTR - R INTERPOLATED SURFACE COORDINATES FROM OCSETS
ZMXINT - NO. OF VALUES IN X AHO R FOR EACH SURFACE

ROUTINES CALLED :

MASFLO - PERFORMS THE MASS FLON INTEGRATIONS

CPPLOT - PLOTS CP CALCULATIONS
FLDPLT - PLOTS CPS IN THE FLOM AREA

ROUTINES CALLED BY:

F LOMIX PROGRAM

CMMMMM M_'MM MMNMMmMMMMMM MMMM MM_.M_ MMMMMM_ M MM U MMMMM M MMMMM MMMM_M

SUBROUTINE PHIPLT( PHI ,X,R, IMAX, JMAX, HI ,NJ ,_, K, IC ,D,H, UP, SHR, ETA )
C _ m

C THIS ROUTINE HANOLES PLOTTING OF PHI VALUES.
C

C

C

C
C

ROUTINES CALLED: PLTEKZ

ROUTINES CALLED BY:

CMMMMMMMMMMMMMMMMMMMMMM_MMNMMMMMM_MMMMMMMM_MMMMMMM_MMMMM_M

SUBROUTINE CPPLOTIXNTR,RNTR,IMXZNT)
m

THIS ROUTINE PLOTS CP CALCULATIONS

INPUT ARGUMENTS:

XNTR - X INTERPOLATED SURFACE COORDINATES FROM BCSETS

RNTR - R INTERPOLATED SURFACE COORDINATES FROM BCSET5

IMXZNT - NO. OF VALUES IN X AND R FOR EACH SURFACE

ROUTINES CALLED: PLTEKZ, MVCHAR

ROUTINES CALLED BY:
OUTPUT - CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY

TO EACH GRID. THESE INCLUDE THE CP PLOTS, THE MASS
FLOW INTEGRATIONS, AND THE DRAG CALCULATZON.

CmMMm_MMM_MMMMMMMM_MM_MM_MMMMMNMMMMMMM_MM_C&I_H_M_M

SUBROUTINE FLDPLT

C

C PLOTS CPS IN THE FLOM AREA

C
C ROUTINES CALLED BY:

C OUTPUT - CALLS THE VARIOUS OUTPUT SI._ROUTINES THAT APPLY TO EACH

C GRID



C
C
C
C
C

C

C

C

C
C

C

It.

THIS ROUTINE COfIBZNES EACH HARMONIC SOLUTION INTO ONE SOLUTZON.

INPUT ARGUPIEN'rS:

THE - THETA ANGLES

CPS - CPS FOR EACH CONTOUR

IHXZNT - 140. OF VALUES IN EACH COHTOI.M
NEXT - 140. OF EXTERNAL SPLZTTER STATZONS

ROUTINES CALLED BY:

FLOMIX PROGRAH

_(pJMPTT,RMXP_T,RAVPTT,IH×,RSP,JM%RSP,NSTOT,I',erlARM)

THIS ROUTINE HANDLES PLOTTING OF THE JUttP IN PHI VALUES AHO THE

MA×irlUHAt_D AVERAGE RESZDUALS

IHPUT ARGUMENTS:
PJHPTT - JL_P IN PHI VALUES

RHXPTT - HAXIMUMRESIDUALS

RAVPTT - AVERAGE RESZOUALS

ZMXRSP - MAXIMUM RESIDUAL POINTER FOR EACH SHEEP FOR I

JMXRSP - MAXIMUM RESIDUAL POINTER FOR EACH SHEEP FOR J
NSTOT - MAXIMUM NO. OF POIUTS TO PLOT

:_ARM - NO. OF HARMONICS(tlCI_DES)

ROUTINES CALLED: PLTEK2

ROUTINES CALLED BY: FLOMIX P_!OGRAM
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APPENDIX

Scarf Angle Analysis

Mixing performance has been found to depend on the geometry characteristics of

the lobe trailing edge plane. In particular, cutback or scarfing can be used
to optimize mixer performance. Typically , the scarf angle (_) can vary + 15°

from a radial cut. Analysis of such configurations is complicated by the

irregular radial surface presented when viewed in a cylindrical frame of

reference. An alternate representation, using a skewed system aligned to the

lobe trailing edge avoids this problem.
r

The governing equations can be transformed from the physical (x,r) to the

computational plane (_,_) by means of the following transformation.

=x- A_" _l=r
C (A.I)

where A =_._ =constant and c=Cos_ = constant. The local velocities can

then be related to these coordinates through chain rule differentiation.

or

_( )= ___ a_( ) +a__ _( )=_A__c) (A.2D)

_-_L__C)
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The _)_ term has been introduced to reflect the comprisable term from the
s.d.t, expansion. Applying these flux definitions to a balance over a general
element, in a cylindrical mesh,yieldl

_-w E-_ N-S a(9 (A.4)

Discriticizing reduces (A.4) to

A. - _%A_ - K_ aA = O,

(A.5)

where gx, gr are differenced along the mesh when expressed in terms of
(A.3). Similarly one can treat boundary intersecting elements in this skewed

system. Recalling equation (22)

where

,_rk ! ("

is the "known" surface flux along the main surface Rm (x). The flux balance in

the skewed system becomes

where the local are as again represent only the exposed portion of the cell.

67



ft is desirable, in general, to have a skewed radial mesh over the entire

calculation domain but boundary conditions are typically defined along radial
upstream and downstream planes. The skewing transformation (A.I) must consider

A=/_x,r). A generalization of the previous analysis is simplified if we

introduce the flux balance in terms of the contravariant velocity components;

those defined normal to the (E,_I)coordinates. Following the approach of
Doria, equations (A.2) applied to (x,r) yields four separate equation systems

for the transformation metrics; eq.

J
o =trx_ + _rx_

If A = constant, these equations yield the following metrics relations

x_-I x_-s r_=o rq-_c

Associated with this transformation are the Jacobian

(A.6)

:r- werq- x7 r_ =

and the three invariant components of the r_etric tensor

A.7a)

_. X_" + r__

o,,_.= xi"x,_+ rerq =o

O-zz = X_ ¢ = I (A.7b)

The conservation flux balance, in terms of the contravariant velocities (L),V)
associated with (_,_) directions, is now given by the following components

(A.8)
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The leading term in each expression reflects the contribution of the
freestream velocity in the x-aligned perturbation potential formulation. One

can compare (A.8) and (A.5) to check for consistency of the models.

I 2.

C

In the above analysis the freestream compone_t is neglected. For a general
element it will cancel out with the opposing face's contribution. Special

consideration is needed for the surface intersecting case.

The previous analysis can now be extended to include problems to wherein the

mesh skewing varies.

-- A(x,r,r

v] -- I-

The metric invariants and Jacobian (A.7a,b) can be reevaluated in terms of

c Dx G _ _r
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The exact relationship forj_ , C, A can be obtained as follows. Consider the

mesh generated from the lobe trailing edge to some downstream phase. Generate

mesh skewing from fan valley contour.

xZ_)=9

_o xd

The equation of the lobe trailing edge is

-I

Similarly the downstream mesh boundary is given by

)<aCr)=X_

Linearly adjusting between these boundaries

2o(Z)- ×oCto)

_a - yoCto)

one obtains a general function expression for the x grid variation

In this frame A , at any _ line, is given by
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